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1
I N T R O D U C T I O N

1 from monks to the monk system

In the current computer-age, a large part of our communication is
born digital. However, there are still large paper-based archives
that contain handwritten materials such as letters, royal decrees,
diaries and much more. These materials are usually historically
relevant. For example, the important Qumran collection, also
known as the Dead Sea scrolls, is a collection of handwritten
texts that are among the oldest manuscripts included in the
bible. A more recent, but also historically relevant example is a
collection from the Dutch National Archive, the Cabinet of the
King (van der Zant et al., 2009, 2008b): This collection contains
Dutch royal decrees such as appointments of judges, rulings and
laws from around the 1900s.

Archives that maintain collections such as the Cabinet of the
King or the Qumran scrolls often have the important task of
providing access to their collections. The historical relevance of
the materials attracts many scholars and people from the general
public interested in the contents of the documents. Because these
archives are vast (the Cabinet of the King fills about 3km of
shelf-space with handwritten documents), it is cumbersome to
find information: An interested researcher usually has to consult
multiple indices to find documents that are relevant to his or her
query. The subject of this thesis is how to build a search engine
for historical handwritten document collections and its building
blocks. Using a search engine for handwritten pages reduces

1
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Figure 1.1: Histogram of number of scans per collection for 24 selected collec-
tions, with a total of 62408 scans in Monk (2017).

the amount of work needed to find a page containing relevant
information. Moreover, the knowledge about the contents and
how to read the material is preserved in the search engine itself—
Knowledge that until now is mainly stored in the minds of
historians and archivists.

Another important reason to study handwriting recognition is
the task itself of reading historical documents. This is a challenge
for human readers, let alone for machines: Unfamiliar scripts
and unknown abbreviations and shorthand make it difficult to
decipher the information that a document contains. The learning
of reading skills is interesting to Artificial Intelligence researchers
from two perspectives: First, the human intelligence perspective
is interesting because it teaches about learning and pattern recog-
nition in biology. Secondly, the machine intelligence perspective
provides the challenge of getting a machine to read.

To study handwriting recognition from the machine intelligence
perspective, the Monk system (Schomaker, 2016) was developed.
At its core, Monk is a search engine for handwritten documents
(van der Zant et al., 2009) that makes many collections in many
different scripts, from many historical periods by many writers
accessible: From the Cabinet of the King, to personal communi-
cation from the interbellum, medieval collections of jury verdicts,



1 from monks to the monk system 3

Figure 1.2: An example of a page from the Leuven alderman scroll collection
(1421 A.D.). The alderman scrolls document the proceedings of
law and the fines that citizens had to pay. When the fines were
paid, and the case was closed, a mark was made through the record,
indicating that the debt was settled. This example features some
challenges a handwriting researcher has to face: abbreviations,
strike troughs, writing between lines, ink smudges and old paper.

Chinese and Arabic letters as well as a collection of fragments
from the Dead Sea scrolls. See Figure 1.1 for an illustration of
the amount of scans available in Monk. These collections can be
quite difficult to read properly, due to, e.g., degraded ink, abbre-
viations that are no longer in use or strike troughs. Figure 1.2
shows an example of such difficult material.

Unfortunately, handwriting recognition techniques are often
tested on relatively clean datasets, such as the isolated digit
collection MNIST (Collobert et al., 2006; Bhowmik et al., 2011)

Figure 1.3: An example from the well-studied Washington collection. Please
notice the crisp letters, consistent, clear writing style and quality of
the background, which are in contrast with Figure 1.2
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and the neatly written letters by president George Washington
(see Figure 1.3 and Fischer et al., 2012; Wei et al., 2013). The
application of techniques that work well for these academic
datasets on the collections in Monk proved difficult. It was not
straight-forward to reproduce the results that were reported in
the literature. Also, for most methods an extensive amount of
labelled data is necessary, which is unavailable for newly scanned
historical documents. The problem of starting from scratch is
called the bootstrapping problem. Solving this problem was one
of the design goals of Monk. We will study bootstrapping and a
number of other issues that we encountered while trying to repro-
duce the results from the literature and during the development
of Monk.

A big issue that prevented a rapid growth of labelled data in
the early stages of the Monk system was the slow progress of
annotation. At first, some experiments were performed for line
retrieval (Schomaker, 2007), but a text line is not a natural object
for search. For these experiments, a line-based web-interface
was used to annotate line by line, starting at the first page. This
means that pages that have been completely annotated are also
fully searchable. However, unseen pages cannot be used as input
for the machine learning methods. This can be an issue for
instance when writing styles change over time. Furthermore, this
does not use the full potential that the computer has to offer. A
switch was therefore made to an approach based on data-mining,
where segmented words, presented in a hit-list interface, can be
annotated throughout the entire collection.

By engaging the human annotators differently—by annotating
through a hit list instead of transcribing text line by line—we
realised that humans can be involved in machine-based handwrit-
ing recognition in different ways: 1. By developing the techniques
that learn from observations (machine learning), 2. by design-
ing feature extraction methods that transform the written words
into mathematical vectors to be used by the machine learning,
and 3. by providing the labels: the knowledge of which word is
depicted on an image—the ground truth.
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Figure 1.4: A common way of representing the handwriting recognition pro-
cess. A handwritten document is segmented into lines and words.
Each word is then pre-processed and transformed into a feature
vector using a feature extraction method. Machine learning can be
applied to these feature vectors. The ground truth for the machine
learning methods is provided by the human labelling process. The
segmentation and pre-processing steps are outside of the scope of
this thesis.

In this thesis, we argue that the machine learning methods should
not get the singular focus of the handwriting recognition research
community. There is also a need to further develop the fields of
labelling and feature design. The goal of this thesis is to study
the assumptions in all three aspects of involvement such that
we can improve the handwriting recognition process. The next
section will give an overview of the topics that are studied in this
thesis and show how the different aspects of human involvement
are related to each other.

2 human involvement in the handwriting recogni-
tion pipeline

Figure 1.4 shows the handwriting recognition process as it is fre-
quently presented: As a pipeline. The first step is to pre-process a
document and segment it into individual word images. These are
then transformed into a feature vector: a robust representation
suitable for numeric computation. Together with a dataset of
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manually labelled word images, a machine learning method can
be applied to learn how to classify unseen word images.

The first step of the pipeline, the pre-processing and segmenta-
tion, is important. Because this is the first step, all other steps
can be affected by errors here (this is related to the concept
“garbage in, garbage out”). There have been numerous studies on
segmentation-free methods (Rothacker and Fink, 2015; Almazán
et al., 2014; Lorigo and Govindaraju, 2006) to prevent errors in
segmentation to have such a cascading effect. Recurrent neural
networks such as LSTMs can operate without segmentation be-
forehand. However, even if the input can be processed without
segmentation in the first step, a post-processing step that does
the segmentation—usually in ASCII-space by specifying codes
for blanks, line endings and paragraphs or by introducing blank
tokens between repeated characters (Bluche et al., 2015; Hannun,
2017)—is still required.

A common argument against segmentation is overcommitment:
The errors made in the segmentation step can not be corrected
in the later stages of the pipeline. For image retrieval, overcom-
mitment is not a big issue because of over-segmentation. This
means that a word-image can have many overlapping word zone
candidates, as shown in Figure 1.5. The assumption is that the
correct word zone candidate will be ranked higher in a hit list
because it is more prototypical (see also Chapter 4). Oversegmen-
tation looks expensive, but the number of word zone candidates,
typically in the dozens or a few hundreds, is much smaller than
the total number of horizontal pixel positions along the x-axis,
which is currently typically in the order of several thousands.

The main focus of this thesis will not be on segmentation and pre-
processing, but on the other three steps in the pipeline: Machine
learning, feature extraction and labelling. Specifically, we will dis-
cuss how we, as researchers, can be involved in the handwriting
recognition process. In the design and development of a large,
trainable retrieval engine for handwriting such as Monk, we
stumbled upon several common assumptions that either proved
to be misleading or required a twist in order to be useful for
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Figure 1.5: Monk uses over-segmentation for finding word zone candidates.
Each line below the words indicates the width of a number of
word zone candidates. The word zone candidate corresponding
to the second line then shows the word “Jan”, the abbreviation of
“January”. This word zone candidate will rank very high in the “Jan”
hit list.

obtaining effective retrieval and recognition performances. These
assumptions will be treated in the following sections.
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2.1 Assumptions in machine learning algorithms

The first part of the pipeline that we will examine in this thesis
is the machine learning process. Specifically, we will look at
common assumptions in hidden Markov models (HMMs) and
support vector machines (SVMs). Even though they have gained
considerable attention, artificial neural networks and deep learn-
ing are not studied in depth. HMMs and SVMs are interesting
because they are strong classifiers and have been very popular in
the handwriting recognition field.

Training HMMs is a non-trivial problem because observations
only give indirect evidence of the hidden states. This means
there are some—well-known—issues with training HMMs. Most
notably, the algorithm will optimize towards a local optimum
(a sub-optimal solution), not necessarily to the global optimum.
Unfortunately, the phenomenon of local optima itself is not the
subject of many studies, while this is such an important property
of the Baum-Welch training method.

We study the local optima to get a better understanding of how
and when they are reached. It is interesting to get a global
perspective on the training of HMMs because this will give more
insights into how models behave. We compare models with
known parameters to trained models. The assumptions that are
examined are related to this issue: Are models that are close to
the global optimum better than models that are further away?

2.2 Assumptions on features

Hidden Markov models learn both the structure and the obser-
vations that provide the partial evidence of the structure. The
observations are usually features that are extracted from, in our
case, images of handwritten words. The assumption related to
features that we test in this thesis is that the underlying structure
is considered to be more important than the observations.

We test this assumption by answering two questions. First, can
we find the structure we know is present in the data by only using
observations? And secondly, can we still perform classification
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when we remove temporal structure from a model? Again we
use models and data with known parameters for comparison
with trained models and calculation of the classification accuracy
of the trained models.

We are interested in seeing the influence the transition probabili-
ties have on the classification accuracy, and how important the
observed features are. This insight is useful in the discussion of
where to focus our engineering effort: On the part that learns
the hidden parameters or the observations, i.e., on the Machine
Learning part of the pipeline, or on the feature extraction.

2.3 Assumptions on the origin and availability of labels

The final assumptions that we will study are related to labels.
Labels provide the ground truth that allows the machine learning
to update the parameters and generalise to unseen data. There
are two assumptions to be studied related to the labels. First,
there is the assumption that there is a dataset available that is
properly labelled. Generally, researchers use existing, academic
datasets or collect labels outside of the recognition process. Sec-
ondly, there is the assumption that the handwriting recognition
process is static, as described in Figure 1.4. Instead, we consider
the process to be a loop like in Figure 1.6 instead, incorporating
all elements in a continuous learning cycle.

This loop is facilitated by using a hit list interface. Word images
are divided into different classes and then ranked such that the
images at the top are most likely to be correct and useful for the
labelling process. A human annotator can then easily select the
word images that are correctly labelled and update the label store
with many labels at once. The classifier and ranking method
are then retrained which updates the hit lists for the annotator,
allowing for even more labels to be added to the system, and
yielding a snowball effect.

The final assumption discussed in this thesis is then the assump-
tion that both classifying and ranking should be done by the
same mechanism. We believe that there are actually two func-



10 introduction

Hit list

= “Conan”

Labeling

Label store

Human
annotation

Monk

Retrieval
engine

Figure 1.6: Overview of how we consider the process to be a loop instead of
a static pipeline. The hit list is an important concept that contains
a list of retrieved images for a certain class that can be easily and
quickly labelled by a human annotator. Each update is used by the
retrieval engine to update the classification and ranking methods,
which provides better hit lists. This way, a snowball effect can occur.

tions to be optimised. This is interesting because in earlier work,
using a single method for both functions yielded unintuitive
results at the top of the hit lists. Having a well-ranked hit list is
essential for achieving a snowball effect.
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3 research questions

The main focus of this thesis is the relationship between the three
aspects of human involvement discussed above. Because the
handwriting recognition community has a strong focus on the
machine learning aspect of handwriting recognition, it is argued
in this thesis that especially the labelling part of the handwriting
recognition loop has been neglected. The main, general research
question is related to this argument.

General Research Question

Where can we have the most impact on the results of a search
engine for historical handwritten documents? Should the atten-
tion be focused on improving the machine learning methods,
the feature engineering methods or the labelling methods? To
answer this question, we will look at the individual parts of the
handwriting recognition process. For each aspect we consider
the more concrete questions.

Research questions related to Machine Learning

Since handwriting concerns patterns of variable width (analogous
to variable duration in speech) a predominant model consisted of
hidden Markov models, that were well studied in the literature
since 1988. However, there are a few assumptions to be aware
of when using HMMs. The models are trained using the Baum-
Welch algorithm, which is a type of Expectation Maximisation
(EM) algorithm. These types of algorithms are used when certain
parameters of a model are not directly observable. This is exactly
the case in HMMs: The observations only give a partial evidence
of the underlying structure. Of course, this is a difficult problem
to solve: How can we model a set of parameters for which we
only have indirect evidence?

The Baum-Welch training algorithm works by randomly creating
a model (the initial model) and updating it iteratively. After a
number of iterations, or until the updates have become too small,
this process stops. The resulting model (the learned model)
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can be stuck in a local optimum. A relatively straight-forward
method to deal with local optima is to train multiple models and
choose the highest performing one. Even though there have been
some studies on how to converge to the global optimum (For ex-
ample, Lee and Park, 2006; Siddiqi et al., 2007, but see Chapter 2

for a more in-depth discussion), this “restarting” scheme is still a
popular method to deal with local optima.

The following questions are intended to study the phenomenon
of local optima:

• Is there a relation between the distance from a learned
model to the global optimum and the final performance of
the learned model?

• Is there a relation between the distance of the initial, ran-
dom model and the distance of the final, trained model?

The assumptions that are questioned here are (a) that the closer
a model is to the global optimum, the better a model should
perform, and (b) that the closer the initial, random model is to
the global optimum, the closer to the global optimum that model
will end up after training.

Research questions related to Feature Extraction

Since hidden Markov models are aimed at modelling time series,
an important component of such models is the transition matrix.
This matrix defines the probability for switching from one state to
another and is therefore the temporal part of the model. However,
typically, the underlying temporal information is not directly
observable: The observations only give partial evidence of the
underlying state.

The general structure of the transition probabilities is called the
topology and indicates which state transitions are allowed and
which are not. For example, the Bakis topology only allows
transitions from a state Sj to state Sj+1 or to itself, as shown
by the topology diagram in Figure 1.7. Of course, from the
observations we cannot directly determine whether the structure
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1 2 3 4

Figure 1.7: Illustration of the Bakis topology in hidden Markov modelling.
The arrows indicate the possible transitions between the numbered
states (it does not show the actual probability of a transition). See
Chapter 3 for more details.

is organised in a Bakis topology or something else, but it is very
common to force the models in handwriting recognition to have
such a topology (Zimmermann and Bunke, 2002; Bunke et al.,
1995; Britto et al., 2001).

The observation probability distributions provide the other im-
portant part of the models. They model the probabilities that
a certain feature will be observed in a certain state. The ob-
servations are features that are extracted from the raw image
pixels—usually an abstraction such that they are robust represen-
tations of the (sub-) characters or words.

The questions related to Feature Extraction are intended to study
the relation between transition and observation probabilities:

• Since the observations only provide partial evidence for the
underlying states, can we learn the topology (the general
structure) of the transition matrix from observations alone?

• Since HMMs model time series, and the temporal infor-
mation is such a central part of the models, is classifica-
tion performance reduced when temporal information is
removed from hidden Markov models?

Research questions related to Labelling

The Monk system implements both classification and searching
methods to provide access to historical documents. However,
the use of the support vector machine (SVM), a strong classifier,
for ranking images in search results, showed unintuitive results
in the top of the search results. This was surprising because
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Figure 1.8: Example of the snowball effect, marked by large jumps in number of
labels for a collection in Monk. Each data point represents one label
being added to the system, showing the time since this collection
has first been online and the number of images labelled at that point
in time. (a) A global view of almost two years of labelling activity
in a single collection. (b) A close-up at a point in time where, with
a single action in the interface, many labels are generated (shown
at roughly the 1 minute mark).

the SVM generally reports high accuracy on image classification
tasks. Since we also use these lists to solicit valuable feedback
from the users, the top of the list is very important: With one
press of a button, the top results can easily be confirmed to be
correct.

This hit-list based approach to labelling enables the snowball
effect. By providing more labels, Monk increases its performance,
which in turn generates a better hit list that makes it easier to
label more images. This effect creates jumps in the number of
labelled images, which remind us of phase transitions in physical
systems. Figure 1.8 shows an example of a collection in the Monk
system with these jumps in the number of labels. This effect is
not possible in a left-to-right annotation process, because there is
no mechanism to use feedback to speed up the labelling process.
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The following questions were raised while observing the counter-
intuitive results in the top of hit lists, and are related to how
to effectively gather good quality labels and achieve a snowball
effect:

• Why are SVMs not suited for ranking handwritten word
images?

• How do we get intuitive hit lists?

4 outline of the thesis

This thesis has three chapters related to answering the research
questions posed in the previous section. In Chapter 2 we ad-
dress the machine learning questions by studying HMMs, while
Chapter 3 discusses HMMs from a feature perspective. Finally,
Chapter 4 brings these subjects together and adds the labelling
perspective to answer the question of how to get intuitive hit
lists.

The last chapter, Chapter 5, concludes the thesis with a summary
of all the findings and a discussion of the main subject of the
thesis: loops instead of pipelines. We also discuss the connection
to methods such as active learning and deep learning.





2
E X A M I N I N G C O M M O N A S S U M P T I O N S A B O U T
T H E C O N V E R G E N C E O F T H E B AU M - W E L C H
T R A I N I N G A L G O R I T H M F O R H I D D E N M A R K O V
M O D E L S

Abstract

Hidden Markov models (HMMs) model time series and
have many applications. However, reliably training an
HMM has proven to be non-trivial. One of the challenges
is that the Baum-Welch algorithm finds a local, instead of
a global optimum. In this paper, we study the conditions
in which the local optimisation algorithm finds an opti-
mum using global information from artificially generated
models and data. Using a known global optimum, we
can look at the distance and performance, in terms of log-
likelihood, of a model at any point during or after training.
We can then test a number of common assumptions, such
as whether a model that is close to the global optimum
actually has a good performance. We find that most com-
mon assumptions do not hold and question whether the
optimisation criterion used by Baum-Welch is the most
effective. Finally, we offer a number of considerations for
future work that aim to help find a better optimum than
using log-likelihood as an optimisation criterion alone.

1 introduction

Hidden Markov models (HMMs) have been used extensively to
model time series in applications of speech recognition (Rabiner,
1989), handwriting recognition (Bunke et al., 1995; Plötz and

17



18 convergence of the baum-welch algorithm for hmms

Fink, 2009) and gene sequence segmentation (Eddy, 1998). How-
ever, non-Markov, neural methods for sequence classification are
gaining considerable momentum in the handwriting recognition
and speech recognition fields. The deep learning method Bidi-
rectional Long Short Term Memory networks (BLSTM) (Graves
et al., 2009; Frinken et al., 2012) delivers very promising results,
at the cost of studies involving HMMs. HMMs still have an active
following, and it is interesting to look at some of the assumptions
that are commonly associated with the training algorithms for
HMMs, and why this technique may be losing popularity.

In a previous study (van Oosten and Schomaker, 2014a), we
investigated the role of the transition probabilities in hidden
Markov modeling and showed that it is hard to learn the correct,
known properties, such as the topology of the transition matrix,
of a Markov process, from artificially-generated sequences of
observations. In the current study we will apply similar methods
to look at convergence of HMMs. We are particularly interested
in the conditions where models seem to converge to a local opti-
mum, as opposed to the global optimum. This is an interesting
topic because generally, it is assumed that the closer the trained
models are to the global optimum, the better the performance
(usually measured by log-likelihood or classification accuracy).

The canonical training methods for HMMs are Baum-Welch (Ra-
biner, 1989) and Viterbi or Segmented k-means training (Rabiner
et al., 1986). Both methods are expectation maximization (EM)
techniques and the final solution is highly dependent of the ini-
tialisation. That means that the starting point, i.e., the set of
initial model parameters — often chosen at random or by using
a clustering method for parts of the model (Bhowmik et al., 2011)
— determines whether or not a model will end up in a local or
a global optimum. The only guarantee that EM gives is that
the likelihood of a model does not decrease during training, i.e.,
the likelihood of modelling the training samples increases or
stays the same: P(O∣λi+1) ≥ P(O∣λi), where λi is the model at
iteration i and O is the training set of observation sequences.

When the solution landscape is not smooth and having a single
optimum, which is almost always the case for non-trivial HMMs,
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Figure 2.1: The final optimum that a model will reach, when trained with
Baum-Welch, depends on the initialisation. Model a will converge
to the local optimum at the left, while model b will converge to the
global optimum on the right. The optimum is in this case defined as
the maximum. Conversely, in gradient descent one would minimise
the loss function, but the problem of the presence of several local
and a single best solution is similar, there.

as opposed to, e.g., the convex SVM loss function, and if the initial
model is not located on a direct path to the global optimum, a
local optimum will be reached. See Figure 2.1 for a schematic
representation of the difference between local and global optima:
Trajectory a leads to a local optimum, whereas trajectory b leads
to the global maximum.

There are a number of studies that investigate achieving a better,
or even a global optimum. These studies can be divided into
two categories: I) Meta search algorithms, that employ global
search over a local search method; and II) Modifications to the
EM algorithm itself.

The first category concerns the meta search algorithms. A straight-
forward method is the ‘restart’ method: train a number of models
and select the best one. However, these restarts can be costly and
do not guarantee convergence to the global optimum. Zhang et al.
(2008) also employ restarts, but devised a method that quickly
prunes unsuccessful attempts. A related method is described by
Lee and Park (2006) which uses simulated annealing, together
with Baum-Welch, to optimize the models. This method also
restarts the EM-algorithm, but instead of starting from a new
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randomly initialised model, selects the new initial parameters us-
ing the simulated annealing method. Another method that uses
restarts is described by Gil and Williams (2009). This method
clusters models by their parameters and selects a new model to
optimise by finding a point outside a cluster.

The second type of solutions covers modifications to the training
algorithm itself. A study by Farago and Lugosi (1989) explains
how to use an alternative to Viterbi training (i.e., only updating
the most likely path) to reach a global optimum in the restricted
case of left-right models. Siddiqi et al. (2007) show a method that
not only avoids local optima, but also searches for the optimal
number of states by ‘splitting’ states with very similar obser-
vation probabilities. There are also spectral techniques, such
as the technique described by Hsu et al. (2012), for finding the
true parameters under certain conditions. These techniques do
not necessarily find the traditional transition and observation
probabilities, but rather a representation that is closely related to
them.

Since the prevailing method of learning the parameters of hidden
Markov models is still the Baum-Welch method, we are interested
in the conditions in which this method converges to local optima.
This interest grew from the observation in a previous study (van
Oosten and Schomaker, 2014a) that it is hard to find the topology
of the underlying transition matrix of a known model. We found
this by comparing a trained model to the model that generated
the observation sequences.

In this paper we will take the method of generating both model
and data a step further and introduce a framework to investigate
the inner workings of the Baum-Welch algorithm from a con-
vergence perspective. We will do this by artificially generating
sequences of discrete tokens1 and comparing the trained model
with the original model that was used to generate the sequences.
As mentioned earlier, the general assumption is that finding the
global optimum is good for performance. We will test this in
Section 3 by observing whether there is a relation between the

1 We use discrete tokens for simplicity. In principle, the methods can also be
applied to continuous-density HMMs.
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distance to the global optimum and performance, in this case
measured by log-likelihood. We expect to see an increase in log-
likelihood when the distance to the global optimum is smaller.
We then also expect to see that distance decreases during the
training of a model, because if the likelihood increases, which is
what Baum-Welch does, the distance should go down.

Another assumption that will be tested is whether the global
optimum is easy to find when the distance is already small.
This means that there is a relation between the distances of
the initial model and the trained model to the global optimum
(see Section 4). Related to this question is whether the global
optimum can be reliably found when parts of the model are
already known. For instance, in gene segmentation (Azad and
Borodovsky, 2004), the transition matrix can usually be estimated
directly from labelled transitions. We expect the distances to the
global optimum to be very low if we do not need to estimate
certain parts of the model (Section 5).

Finally, in Section 6 we touch on some ideas that still need to
be developed further. We will investigate how much global
information is actually needed to guide the local process to a
global optimum. We believe that the methods of inspecting the
inner workings of the Baum-Welch algorithm, a local search
algorithm, by using global information are very promising.

2 method

To investigate the convergence towards a global optimum, we
need to know what the global optimum is. As we mentioned
in the introduction, we will generate artificial data by running
the algorithm by Rabiner (1989) using randomly chosen models.
When we train a model on the data generated from a model, we
call the generating model, λO, the original model and consider it
to be the global optimum for the Baum-Welch training algorithm.
We can compare the newly trained model, λT, to the original
model. Figure 2.2 shows this procedure schematically.
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Figure 2.2: Method to train and compare models: By generating data from a
model with known parameters, and training on that data, we can
compare the model with known parameters with the newly trained
model. Model initialisation is usually done by randomly generating
model parameters, but some experiments have a different method
of initialisation.

Since we now define the original, generating model to be the
global optimum, we need to know whether another model is
‘close’ to it. Rabiner (1989) also describes a distance measure
D(λp, λq), that is “a measure of how well model λp matches
observations generated by model λq,relative to how well model
λq matches observations generated by itself.”

However, using a distance measure based on generated data by
either model, we can not measure the distance of any part of
a model λ = (A, B, π) separately. More importantly, Rabiner’s
distance measure uses log-likelihood: a measure that is used to
optimize the models in the first place. We therefore propose to
use a different distance measure that is based on the χ

2 distance.
The distance metric is the sum of all the χ

2 distances over all rows
of the three matrices of a model λ, and we can selectively choose
what distances to use in our comparison: DA(λp, λq) for com-
paring only transition matrices, DB(λp, λq) for only comparing
observation matrices, Dπ(λp, λq) for the initial state distributions,
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and any sum of these three distances. We define DA(λp, λq) as
follows:

DA(λp, λq) =
N

∑
i=1

N

∑
j=1

(A
p
ij − A

q
ij)

2

A
p
ij + A

q
ij

where A
p
ij denotes the transition probability from state i to state

j in model λp. DB(λp, λq) and Dπ(λp, λq) are defined simi-
larly. We also define the sum of the distances of A, B and π

as DABπ(λp, λq) = DA(λp, λq)+ DB(λp, λq)+ Dπ(λp, λq).

The log-likelihood measure is what the Baum-Welch training algo-
rithm optimises, and is therefore usually seen as the performance
metric for a single model. When doing a simple classification
task to decide which model is the most likely model to have
generated a certain sequence, the common method is to return
the model with the highest log-likelihood:

class(o⃗) = argmax
i

[logL(o⃗∣λi)]

In a Bayesian sense, the actual log-likelihood is now less interest-
ing, as long as the ‘correct’ model has the highest log-likelihood.
It can be argued, however, that the goal of the training should
be to reach the global optimum, provided that the assumption
holds that a small distance to the global optimum leads to a high
log-likelihood. In most experiments in this study, we use the
average log-likelihood on a dataset as a measure of performance.
That is: we compute the log-likelihood for all observation se-
quences in that dataset and use their average value as a measure
of performance.

The models in this study have N = 20 states and a set of M = 20
discrete observable tokens. We generated 1500 sequences per
model with a length of ∣o⃗∣ = 50 tokens. The sequences were of
fixed length to reduce complexity and prevent potential problems
with variable sequence length. The length of these sequences
was chosen to be roughly the average sequence length of our
previous experiments with sliding windows over words in our
handwriting recognition system.

A dataset of 5000 random model initialisations will be used
frequently in this study. Training new models starting at these
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initialisations takes roughly 8 minutes per model. Distributing
the training of 5000 models over 8 cores takes about 3.5 days to
complete.

3 relation between distance to the global optimum

and performance in terms of maximum likelihood

The first assumption tested in this section is that models that
are close to the global optimum also perform better. We use
the average log-likelihood on the training set as a measure of
performance. When measuring the performance of a single
model, we cannot use accuracy since there are no models to
compare to.

We randomly initialised 5000 models and trained them on a
single dataset. These models then all represent different starting
points in the ‘fitness’ landscape. The dataset of 1500 instances
was generated by using the Rabiner algorithm on model λO and
used to train all models. λO has a transition matrix with a Bakis
topology. To prevent also having to estimate the topology from
scratch, the random models were limited to a Bakis model as
well. Note that this restriction should make the model estimation
easier than is the case for arbitrary topologies.

After training the 5000 randomly initialised models on the train-
ing set, we plot DABπ(λT, λO), the distance of the trained model
to the original, against the average log-likelihood. Figure 2.3
shows the results of this experiment. For comparison, the av-
erage log-likelihood of the generating model attained the value
−143.27.

We can see that there is no clear relationship between distance
and performance. However, we can see that the few models that
do end up at a very low distance from the original model λO,
tend to have a better performance. That does not mean that only
models with a low distance show a high performance (Figure 2.3,
upper left data points). On the contrary: the models with an
average log-likelihood of approximately −143.2 show a wide
range of distances of 1.8 to 6.5.
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Figure 2.3: Scatter plot of obtained log-likelihood values on a training set with
respect to the measured χ

2 distance between the true (original)
model and many obtained models (N=5000) that were trained from
random initial conditions. Log-likelihood for the generating model
is −143.27. The scatter plot appears to indicate that there is a wide
dispersion of solutions, both in terms of log-likelihood and model
distance. Also, in log-likelihood space there appear to be ‘plateaus’
of solutions, with a wide variation in the distance between trained
model and original.

In the remainder of the paper we will address a series of concrete
Findings, that are based on our empirical work with the simula-
tions described in this study. These simulations are inspired by
our work in handwriting recognition.

Finding 1: The relation between distance to the original model
and the final performance measure for HMM training, i.e., the
maximum likelihood, is not clear. This means that distance is a
poor predictor of (best) ML estimate and vice versa.

There is another assumption that is related to the question
whether distance is a good predictor of performance: if the
performance during training goes up, the distance to the global
optimum should go down. It is not unreasonable to assume this
if there is a clear relation between distance and performance,
because it would mean that a better performance would lead to
models closer to the global optimum.
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Figure 2.4: Distance and likelihood over iterations of Baum-Welch training,
for four different random initialisations. The top figure shows the
distance of the model in training while the bottom figure shows the
average log-likelihood (the actual metric that is being optimized)
on the training set.

This can be tested by plotting the distance and performance
against the training iteration. We randomly selected four models
from the 5000 models from the previous experiment, and plotted
the distances and average likelihood in Figure 2.4.

We can see that the model distance to the original model λO, after
a small dip, actually goes up again. Depending on how long
we let the models train, the distance might even end up larger
than at the very first training iteration). At the same time, we see
that the average log-likelihood shows a common pattern of quick
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improvements and then levelling off to an asymptote, reaching
more or less the same log-likelihood for all four models.

Finding 2: The distance of the parameters of a model to the
global optimum does not necessarily go down during training,
in contrast to the log-likelihood, that increases to an asymptote
as a property of the Baum-Welch algorithm.

It should be noted that the implementation of the Baum-Welch
algorithm in this study was evaluated against other implementa-
tions, without revealing significant differences in an earlier study
(van Oosten and Schomaker, 2014a).

4 relation between initial and trained distance

to the global optimum

The final optimum that an EM algorithm reaches is very depen-
dent of the initial start condition. In this section, we test the
assumption that the closer we are to the global optimum (i.e.,
the smaller the distance from a model to λO), the easier it is to
find the global optimum. In other words, if the assumption is
valid, we expect there to be a relation between DABπ(λI , λO) and
DABπ(λT, λO).

In this section we are looking at the same 5000 models that were
trained in the previous experiment, but now from the perspective
of the assumption that the closer we are to the global optimum
initially, the closer the final trained model will be. However,
there is a model that is even closer to the global optimum than
any of the random initialisations: the original model λO, which
obviously has a distance of 0.

We initialise the Baum-Welch training with the original model
(i.e., λI ← λO) and train on the data generated using λO until we
reach a convergence-criterion2. It is interesting to note that it
took the Baum-Welch algorithm around 1200 iterations to reach

2 In this case, a very strict criterion of 50 iterations with a change in average
log-likelihood of smaller than 10−12.
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convergence. The final distance DABπ(λT, λO), averaged over ten
different models, is 0.43.

Note that this means that the training makes the model drift away
from the original model. This can be explained by the fact that we
do not have an infinitely large dataset. The experiments are per-
formed with 1500 sequences, but this is still only a limited view
on all 310 parameters for this model (10 × 10 state transitions,
10× 20 observation probabilities and 10 initial state probabilities).
The view is limited because the observations only give partial
evidence for the underlying states. Getting a perfectly trained
model λT would require an infinitely large number of generated
sequences, and thus an infinite amount of training time.

Finding 3: When initialised perfectly at the global optimum, the
final model will have drifted away a bit, but still ends up very
close to the global optimum.

Returning to the 5000 models that we trained, we expect that
when running Baum-Welch algorithm on a model with a small
initial distance to the original model will lead to a final trained
model with a smaller distance to the original model.

Figure 2.5 shows the results of plotting these distances against
each other, using densities. Using the diagonal line, we can
see that all the models that end up above the line increased
in distance, while everything below it lowered the distance to
the original model. We can see here that even though the strict
majority of the models ended up (78%) below the line, there is
still a large number of models that moved away from the global
optimum. We can also see that there is not a very clear relation
between the two distance measures. On average, the Baum-
Welch training will have a slight beneficial effect, by improving
the distance by −1.41.

Finding 4: DABπ(λi, λO), the distance of the initial model to the
original model is a bad predictor for DABπ(λT, λO), the distance
of the trained model.
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Figure 2.5: Density plot of the distance of the initial model λI to the original
model λO versus the distance of the trained model λT . The diagonal
equality line shows that models that fall above this line have moved
away from the global optimum, while models below the line have
improved their distance. 3924 models fall below the equality line,
1076 models above it. The red dot shows the model with the lowest
distance. The shape of the densities shows no clear relationship be-
tween initial model distance and final trained distance. A histogram
of 50 × 50 model distances was used to compute the densities

Another way to look at the relation between initialisation and
the found optimum is by plotting the distance during training.
Figure 2.6 shows the trajectories of four models over time, repre-
sented by the distances of transition and observation probabilities.
The initial model is indicated in the figure by a circle, while the
final model is indicated by a triangle. The figure clearly shows
the sub-optimal path through the DA versus DB landscape.
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Figure 2.6: Trajectories of four random models during training, represented
by the distances between in-training model and original: transition
probabilities versus observation probabilities (i.e., DA(λi, λO) ver-
sus DB(λi, λO), where λi is the model at iteration i). The trajectories
start at the circle and end at the triangle. They are haphazard, as
opposed to converging to the lower left corner.

Trajectory ‘a’ starts promising, but suddenly deteriorates in tran-
sition probability distance. The trajectory migrates to the strange
attractor indicated by ‘*’. Trajectory ‘b’ is reasonable: the distance
of the transition matrix improves a lot, and the distance of the
observation probabilities improve slightly as well. Trajectory ‘c’
is more chaotic and, like ‘a’, also ends up in the attractor indi-
cated by ‘*’. Trajectory ‘d’ has, at the end of the training, not
changed much when looking at the transition probabilities, but
did improve considerably in observation probability distance.
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It is interesting that the distance of the observation probabilities
seems to be optimised first, as indicated by the initial downward
trajectory. Even though the distances seem to be minimized in
the first couple of training iterations, the trajectory moves away
from the desired (0, 0) point later in the training, just like we saw
in Figure 2.4. This leads us to question whether the Baum-Welch
optimization criterion, i.e., maximizing the log-likelihood, is the
most optimal criterion.

5 training with partially known models

In certain applications some information can be easily inferred
from the data. As mentioned in the introduction, the transition
probabilities for models in gene segmentation can be estimated
very reliably by using maximum likelihood estimation (Azad and
Borodovsky, 2004). This usually means that the actual transitions
are labelled in the training dataset. In other applications such
as handwriting and speech recognition this information is not
readily available.

In (van Oosten and Schomaker, 2014a), we examined the impor-
tance of a correctly estimated transition matrix. In this section,
we will examine a related question: How closely can we get to
the global optimum if certain properties are fixed to the known
properties from the original model.

To answer this question we will copy the probabilities that we
want to fix from the original model. This is also called ‘clamping’,
from the idea of a voltage clamp in electrophysiology. We will
look at two experiments: in the first experiment the transition
probabilities are fixed while the observation probabilities will
be trained. The second experiment will clamp the observation
probabilities, and while keeping these fixed train the transition
probabilities. We will then look at the final distances to the
original model.

Performing these experiments, we found that all models converge
to a model that has a very small distance to the original model.
Table 2.1 shows the distances for the experiments described in
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Transition prob. Observation prob. DABπ(λO)
fixed trained 0.26

trained fixed 0.08

Table 2.1: Results of having certain properties of the model already known.
The numbers are averages over 10 different models. ‘Fixed’ means
that the model took either the transition or observation probabilities
and these were not updated during training. ‘Trained’ means that the
probabilities were randomly initialised and updated during training.
The low distance to the original model when keeping the observation
probabilities fixed seems to indicate that the observation probabilities
are more important than the transition probabilities.

this section. We believe these numbers are indicative of the
distances one could expect when reaching a global maximum
because we made the task very easy for the algorithm to solve.

For comparison, the average distance of the transition matrices of
all 5000 models is DA(λT, λO) = 3.08 ± 1.37, and the average dis-
tance of the observation probabilities is DB(λT, λO) = 2.01 ± 0.89.
Please note also that when keeping the observation probabilities
fixed, the total distance DABπ(λT, λO) is even lower than half the
distance of models that had a clamped transition matrix. This is
interesting because it indicates the importance of the observation
probabilities.

Finding 5: Keeping either the transition or observation probabili-
ties fixed makes the Baum-Welch algorithm converge very close
to the global optimum.

6 implications

In the previous sections of this report, we have looked at the
distance from a trained model to the original model with the
purpose of ‘debugging’ the Baum-Welch process – to see when
it converges to a global optimum. All the experiments seem to
indicate that there are configurations of an initial model that do
converge to a model close to the data-generating model. However,
the distance does not seem to be a very good predictor for either
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average log-likelihood or the distance of the final model to the
global optimum, the original model λO.

It is difficult to gauge from distance alone what the optimal
initial position is. It would be useful to have the information
on whether a model is moving in the right direction at training
time, but –alas– the ‘original’ model for all practical purposes of
HMMs is not available. If we could push a model in the right
direction, this might give the Baum-Welch algorithm enough
information to find an attractor close to the global optimum. In
this section we will look at how much of a push the training
algorithm actually needs and what we can do with that.

6.1 How much do we need to ‘push’ a model in the right
direction?

For the purpose of pushing the Baum-Welch algorithm in the
right direction, we will modify the updates to the parameters
by using the known, original model. This means of course that
this method cannot be used in practice, but it will give us some
insight into how much the algorithm needs to be shown the
correct direction.

We introduce a mix-factor α here. During the update to the
parameters of the model, the mix-factor modifies the standard
Baum-Welch update to include some knowledge of the original
model. The new update rule is formulated as follows:

λi+1 = λi + ∆P

where
∆P = (1 − α)∆PBW + α∆PT

with ∆PBW being the update that would be performed by using
Baum-Welch alone, and ∆PT is the difference with the true, origi-
nal model, and thus the delta required to get to the true model
in a single step. With the α parameter, we can therefore tweak
how much of the true model will be added to the current model,
and thus see how much we need to force the update in the right
direction to find the global optimum. Setting α to 0, the update
rule would be identical to the standard Baum-Welch update rule.
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Figure 2.7: Results of the experiments with a mix-factor α between 0 and
0.1 with 0.001 increments, each data point is the average distance
to the global optimum of 100 different initialisations. The 100

different initialisations are shared between the different α values,
so the initialisation 0 for α = 0.01 is the same as initialisation 0 for
α = 0.02. The graph shows that a mix of 99% Baum-Welch and
∼ 1% additional information leads to a desired low distance.

It is important to note that for α > 0, the Baum-Welch guarantee
P(O∣λi+1) ≥ P(O∣λi) no longer holds. This is a necessity of
our goal: to push Baum-Welch out of the path towards a local
optimum. This does not mean that a push out of that path will
always result in a worse log-likelihood, but the fundamental
guarantee no longer applies.

Starting at α = 0, with increments of 0.001, we trained 100 differ-
ent models per value of α and took the average distance to the
global optimum. The results are shown in Figure 2.7.

We can see that at α ≈ 0.015, the distance has reached a distance
of around 0.25, a drop of almost 5 from the default Baum-Welch
algorithm. So, with a relatively small push, we can already push
the model in the right direction to reach an optimum very close
to the original model. This is good news, because we believe that
this push can be trained using a meta-learning algorithm.



6 implications 35

⋮

⋮

⋮
⋮

∆PBW

P

∆PT

Figure 2.8: Schematic representation of an MLP designed to transform the
change desired by the Baum-Welch algorithm to the change that
would minimize the distance to the true model.

6.2 Is meta-learning necessary?

We want to use the fact that just a small push in the correct
direction has a big impact on the final distance to the global
optimum. However, in a realistic setting, the known model is
not available, so the correct direction is unknown. This section
describes an idea to apply the information that can be obtained
when the global knowledge is available, in a setting where only
local knowledge can be used.

The basic idea is to train, an external classification system to
predict the push that is needed to move in the right direction
given only the information available at the time. The data that is
necessary for training such a neural network can be obtained by
the following procedure: I. Generate data from a random model,
II. Train multiple, randomly initialised models on the data, and
III. Store the Baum-Welch update, ∆PBW as well as the difference
with the true model, ∆PT.

While this approach needs more time to be fleshed out, a possible
direction that is being investigated right now is to use a multilayer
perceptron (MLP), such as sketched in Figure 2.8. It uses both
the current model and the Baum-Welch updates as inputs and
∆PT as the output. The model can be used to transform current
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updates (when there is no global knowledge available) to a push
in possibly the right direction. We consider this to be the next
phase in the research towards finding the global optimum for
HMMs. The novelty is that we can now use global knowledge to
guide a local search algorithm.

7 discussion and conclusion

In this paper, we have examined the inner process of training
HMMs. We have looked at the convergence of the Baum-Welch
algorithm using tools such as generating models and sequences,
comparing models using a χ

2-based metric, and changes in dis-
tance over time. We employed these methods to study common
assumptions about HMMs and look at the conditions where
HMMs converge to a local optimum, rather than a global one.
Using a model, λO, we can generate sequences to train new, ran-
domly initialised models. We then call λO the global optimum
for the models trained on the generated sequences.

The common assumption that is tested in this study is that when
the model is close to the global optimum (measured by distance),
the performance (in terms of likelihood) will be good. In Section 3

we have shown that the assumption does not hold by showing
that distance is a poor predictor of likelihood. In the same section,
we have also shown that the distance of of a model to the global
optimum does not necessarily go down during training with the
Baum-Welch algorithm.

In Section 4 we looked at another assumption: if the initial model
is close to the global optimum, the final trained model will also
be close. Combined with the findings of Section 3, we have found
that the distance of the initial model to the global optimum is a
bad predictor for the final distance of the trained model to the
global optimum. Therefore, there is no guarantee that a small
initial distance will yield a good model.

Finally, in Section 5, we have shown that when we have a partially
known, and fixed, model, the Baum-Welch algorithm does not
have trouble finding the global optimum. This fixing, also known
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as clamping, is common in applications in bio-informatics, most
notably in gene-segmentation (Azad and Borodovsky, 2004).

These findings mostly contradict most common assumptions
about HMMs and the training method that is most frequently
employed to train HMMs and lead us to question whether max-
imizing the log-likelihood is the best optimisation criterion for
training an HMM. It is important to note that we have only
tackled a small portion of the problem. For instance, we have
not looked at classification accuracy as the measure of perfor-
mance. We have chosen to look at log-likelihood first because
this is the measure that is optimised by Baum-Welch. It is com-
monly assumed that being close to the global optimum leads to
a good log-likelihood, which in turn leads to a good classifica-
tion accuracy (DABπ(λi, λO) ↦ log L ↦ accuracy (%)). In our
experiments, we have only looked at the first step in this chain,
but it is still very interesting to look at the second step in future
work as well: does a good log-likelihood on the training set lead
to a good classification accuracy.

Another problem that is not addressed in this paper is whether
handwriting can actually be modelled as a Markovian process.
There are studies that use context to model parts of the handwrit-
ing outside the current field of view of the model (Bianne-Bernard
et al., 2011; Dolfing and Haeb-Umbach, 1997). A different method
is applied by Frinken et al. (2014): by using a graph-cut approach
to decoding HMMs, non-Markovian constraints can be used to
model long-term dependencies in handwriting.

Ultimately, we are interested in the context in which an HMM
will be used. We identify two movements currently. The first
movement is towards systems that use convolutional neural nets
and/or recurrent neural nets such as (B)LSTMs (Graves et al.,
2009; Frinken et al., 2012). There seems to be a growing com-
munity of researchers and engineers that move in this direction,
given by the recent successes achieved by this system.

On the other hand, in systems that still use HMMs, we see a
movement towards fairly complex systems, with a lot of human
(engineering) effort being spent in designing and optimising
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systems that employ HMMs, either in terms of system complexity
(Artières et al., 2007; Bideault et al., 2015; Khemiri et al., 2015;
Roy et al., 2014; Ahmad et al., 2014), or in the number of hyper-
parameters to tune (Britto et al., 2001; Rothacker and Fink, 2015;
Puigcerver et al., 2015).

In both neural networks and HMMs research, we believe there is
great need to understand the mechanism within the black box
(see for other examples Elman, 1990 for multi-layer perceptrons
and Schuster-Böckler et al., 2004 for HMMs). In this study, we
have shown one particular method: looking at a local process
using global information. We believe there is still much to be
gained from this approach. For example, we could learn to
recognise (un)successful trajectories quickly, or even use meta-
learning to modify the inner-loop to ‘push’ the algorithm towards
the global optimum. The experiments with the mix-factor are
hopeful: The Baum-Welch algorithm only needs a small push in
the right direction to find the global optimum.

To conclude, we have used artificially generated data to examine
common assumptions about the convergence property of the
Baum-Welch training algorithm. We found that the distance to
the global optimum is a poor predictor of the final log-likelihood
and that the distance does not necessarily go down during train-
ing. We also found that the distance of the initial, random model
to the global optimum is a poor predictor for the distance of
the final, trained model. Finally, we found that keeping either
the transition or observation probabilities fixed makes the Baum-
Welch algorithm converge very close to the global optimum.

postscript

In this chapter, we examined the machine learning aspect of the
pipeline, as discussed in Chapter 1, by looking at the training
process of HMMs. We challenged a number of assumptions
on the convergence to the global optimum by creating a model,
considering it the global optimum and generating data. This
method can be used to study many different machine learning
methods that have a tendency to end up in local optima.
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Before moving on to other machine learning methods, we will
use HMMs again to study another part of the handwriting recog-
nition pipeline: Feature Extraction. This part of the pipeline
builds a representation of the handwritten word images, in such
a way that the machine learning can compute the class of a word
image.

In the next chapter, we will move from the full-model compar-
isons from this chapter, to studying the relation between the
learning algorithm and the feature representation. We will use
the same method of generating data with known properties to
study whether these properties can be learned and what happens
if we remove temporal modelling from the model.





3
A R E E VA L UAT I O N A N D B E N C H M A R K O F
H I D D E N M A R K O V M O D E L S

Abstract

Hidden Markov models are frequently used in
handwriting-recognition applications. While a large num-
ber of methodological variants have been developed to
accommodate different use cases, the core concepts have
not been changed much. In this paper, we develop a num-
ber of datasets to benchmark our own implementation
as well as various other tool kits. We introduce a grad-
ual scale of difficulty that allows comparison of datasets
in terms of separability of classes. Two experiments are
performed to review the basic HMM functions, especially
aimed at evaluating the role of the transition probability
matrix. We found that the transition matrix may be far less
important than the observation probabilities. Furthermore,
the traditional training methods are not always able to find
the proper (true) topology of the transition matrix. These
findings support the view that the quality of the features
may require more attention than the aspect of temporal
modelling addressed by HMMs.

1 introduction

In 1989, Rabiner published the seminal work (Rabiner, 1989) on
hidden Markov models (HMMs), with applications in speech
recognition. Since then, HMMs have been used in other domains
as well, such as segmenting gene sequences (Eddy, 1998) and
handwriting recognition (Bunke et al., 1995; Plötz and Fink, 2009).

41
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In this paper, we will discuss the applications in this last domain
and HMMs in general.

There is a large number of variations of the regular HMMs that
Rabiner wrote about, ranging from pseudo 2D-HMMs (Kuo and
Agazzi, 1993), to truly 2D-HMMs (Markov random fields) (Park
and Lee, 1998) and explicit duration modelling (Benouareth et al.,
2008), to nested HMMs (Borkar et al., 2001) and many more. In
the core, these variations are still HMMs, usually trained using
the Baum-Welch algorithm. When the data is already labelled
with hidden states, however, the transition probability matrix
can be modelled directly, without using the potentially more
unpredictable EM-based approach. This is the case in segmenting
gene sequences with profile HMMs (Eddy, 1998) for example,
using many pattern heuristics to identify state-transitions in the
sequence.

The overall HMM architecture (e.g., determining the number
of states, transition matrix topology and integrating it into a
larger framework) requires a lot of human effort. However, to
our knowledge, no real benchmark has been proposed to test
algorithm variants of HMM implementations. In section 2, we
will discuss how such a benchmark can be constructed. It will
not only provide a way to compare results, but also allow one to
determine the difficulty of a particular dataset.

The goal of this paper is to investigate the core of HMMs. HMMs
consist of three main components: the initial state probability
distribution (π⃗), the transition probability matrix (A) and the
observation probability functions (B). While the role of the initial
state probability distribution is known to be of relatively small
importance (especially in left-right topologies such as Bakis, since
these models always start in the first state), it is hard to find
concrete information on the relative importance of the transition
and observation probabilities for optimal performance in the
literature.

Artières et al. (2002) mention in passing the importance of the
observation probabilities over the transition matrix. However,
the study does not provide further information. Therefore, in
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section 4 an experiment is presented to gain a better insight in the
importance of the transition matrix. It will show that, indeed, the
observation probabilities are very important. The implications
of this observation and the consequences for using HMMs as a
paradigm in handwriting recognition are discussed in the final
section.

We will show, using generated data, that it is very difficult for
the Baum-Welch algorithm to find the correct topology of the
underlying Markovian process. By generating data according to
a known Markov process with very specific properties (namely a
left-right HMM), we know which properties the ergodic model,
initially without any restrictions, should get after training. We
can now show that the explicitly coded left-right topology is not
found by an ergodic model. See also Figueiredo and Jain (2002)
for a discussion of the brittleness of EM algorithms.

Finally, we show that, surprisingly, removing the temporal infor-
mation from an HMM does not necessarily have a large impact
on performance in a real-world problem.

2 benchmark

We will run some experiments using our own implementation
as well as other HMM toolkits on a generated data set as a
benchmark. It is hard to find a proper HMM benchmark for dis-
crete, one dimensional data that has a gradual scale of increasing
difficulty. The dataset that was generated for this purpose has
varying degrees of symbol lexicon overlap between classes, mak-
ing the completely overlapping set most difficult and the dataset
with the largest between-class distance least difficult. This is
useful for comparing performances between runs on different
feature methods, having the ability to attach a ‘difficulty index’
to each.

The generated data contains 100 classes, each class consists of
generated transition and observation matrices. The transition
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matrix is a randomly1 initialised Bakis model with Nstates = 10
states, which is appropriate for variable duration modeling of
left-right symbol sequences. The observation probability func-
tions, with Nsymbols = 20 symbols, are also instantiated randomly.
The topology was chosen as Bakis in this benchmark. Most
HMM implementations do not have restrictions on topology,
except the dHMM framework (which uses a fixed, hard-coded
Bakis structure). See also section 3 for more details on different
topologies.

The gradual scale of difficulty is achieved by having multiple
data sets with a varying degree of separability in symbol space.
Concretely, this means that there is an overlap in lexicons between
classes. A separability of δ of a dataset is defined by the following
equation:

L1 = {1 . . . Ns}
Li = {Li−1,0 + δ . . . Li−1,0 + δ + Ns}

(3.1)

Where δ is the separability, Li is the lexicon, the set of symbols,
to be used for class i, Li,j is the jth element of Li and Ns is the size
of the lexicon, i.e., number of symbols per class. A separability of
δ = 0 is the most difficult case, because all classes share the same
set of symbols: L1 = L2 = {a, b, c}. A separability of δ = 1 means
that between classes, one symbol is not re-used in the next class:
L1 = {a, b, c} and L2 = {b, c, d}, and so on. With more separation
than symbols, a gap between the symbols is present: A dataset
with L1 = {a, b, c} and L2 = {e, f , g} has a separation of δ = 4.

In this section, we will show the results of running several HMM
frameworks on the generated datasets. We test the popular HTK
tool kit, which is well known in speech recognition (Young et al.,
2006); GHMM, developed mainly for bio-informatics applications
(ghm, 2003); a framework developed by Myers and Whitson
(Myers and Whitson, 1994), dubbed dHMM here, mainly for
discrete Bakis models for automatic speech recognition; and
finally our own framework, developed from scratch to review in
great detail the algorithmic details of HMMs, dubbed jpHMM.

1 Using the default python module random, which uses a Mersenne twister
pseudorandom number generator
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Table 3.1: Average classification performance (%) of three randomly initialised
runs on the same dataset. Please note that the standard deviation
for dHMM and GHMM is 0 due to the use of a static random seed,
instead of a random seed. HTK-hinit uses the hinit tool to initialise
the model with some estimates from the data, which increases per-
formance only slightly on these datasets. The very small difference
between a separability of δ = 10 and δ = 20 is not visible in this table.
Nstates = 10, Nsymbols = 20

Separability (δ) jpHMM dHMM GHMM HTK HTK-hinit

0 1% (± 0.10) 1% 1% 1% (± 0.12) 1% (± 0.06)
1 41% (± 0.46) 40% 37% 41% (± 0.12) 41% (± 0.62)
2 66% (± 0.38) 64% 61% 66% (± 0.10) 66% (± 0.15)
3 81% (± 0.10) 78% 76% 80% (± 0.10) 80% (± 0.10)
5 95% (± 0.25) 93% 92% 94% (± 0.17) 94% (± 0.15)
10 100% (± 0.00) 100% 100% 100% (± 0.00) 100% (± 0.00)
20 100% (± 0.00) 100% 100% 100% (± 0.00) 100% (± 0.00)

We also use the HTK toolkit together with the hinit tool to have
a better initialised model, compared to random initialisation.

The benchmark datasets in this paper are all synthesized and dis-
crete. Also, the duration of the sequences is limited. This means
that the results of the current study can not directly be compared
to all possible applications. However, there is no fundamental
limitation on sequence length, or number of states. This can
be addressed in future releases of the benchmark. For some
applications and features, continuous observation modelling is
beneficial (Chen et al., 1995), while for other applications and fea-
ture methods, discrete observation modelling is still very relevant
(Rigoll et al., 1996). In order to study the core details of HMMs,
using discrete observations is interesting, since its modelling is
almost trivial. Common techniques to use discrete models on
continuous data are vector quantization (Schenk et al., 2008),
k-means clustering, or self-organizing maps (see also section 4).

The generated datasets have a separability of δ ∈

{0, 1, 2, 3, 5, 10, 20}. The number of states is Nstates = 10,
Nsymbols = 20, the length of each sequence is ∣O⃗∣ = 10 obser-
vations, yielding effectively an artificial stochastic language with
10-letter words. We have generated 100 classes with 300 se-
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quences each. We trained models from each toolkit on all classes,
and performed classification based on the most likely model for
an instance.

Results The classification performances on the seven datasets
are reported in Table 3.1, showing that all implementations per-
form roughly equally well, which is to be expected. However,
we can also see the relation between benchmark difficulty, the
separability δ and classification performance for five HMM im-
plementations. From a separability of about δ = 5 onward (for a
dataset with Nstates = 10 and Nsymbols = 20) classification becomes
very accurate.

3 learning the topology of a transition matrix

In this section and the next, we describe two experiments to
determine the importance of temporal modelling which is effec-
tuated by the transition matrix in the HMM framework. The
first experiment is mainly focused on the performance of the
Baum-Welch algorithm, while the second shows what happens
when the temporal information is removed from an HMM.

The Baum-Welch algorithm, an Expectation-Maximisation (EM)
algorithm, works by initialising a model, often by using random
probabilities, and then incrementally improving it. The initialisa-
tion step is very important due to the possibility of ending up
in a local maximum, and the ‘random’ method is therefore very
brittle, requiring human supervision.

As a first experiment to examine the transition matrix, we gener-
ate artificial data again. This has the advantage that we explicitly
know the properties of the transition matrix. The specific prop-
erty that we are interested in, currently, is the topology of the
model. The topology is the shape of the transition matrix and
there are a number of topologies possible. The most well-known
is the Bakis topology, which is a left-right model that defines for
each state two transition probabilities: to the current state and to
the next state. Another topology is the Ergodic topology, which
puts no a-priory restrictions on the transition probabilities: every
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1 2 3 4

(a) Bakis

1 2

3 4

(b) Ergodic

Figure 3.1: Illustration of the Bakis and Ergodic topologies. The arrows indi-
cate the possible transitions between the numbered states, without
indicating the probability of these transitions.

state has a (possible) transition to every state (including itself).
See Fig. 3.1 for an graphical representation of these topologies. A
variant of Bakis, that has the ability to skip a state by also having
a transition probability from Si to Si+2, was left out for brevity.

The experiment is set up as follows: a model is created by ran-
domly initialising a Bakis topology with N = 20 states (L = 20
symbols). After generating 300 instances of 40 observations long
with this topology, a fully Ergodic model is trained on these
instances. The resulting transition matrix is examined: has it
learned the fact that we used a Bakis topology to generate the
training data? To be fair, we shuffle the states in the trained
model to have the smallest χ

2 distance to the original model. The
found hidden state S1 in the trained model does not have to be
state S1 in the generating model, after all.

Results The original, generated model and the learned er-
godic model can be visually inspected in Fig. 3.2. The transition
matrix is converted to an image by taking the state-transition
probability and coding it into a grey-scale colour: a probability
of 0 is rendered as white, while a probability of 1 is rendered
as black. From these figures, we can see that the Bakis topol-
ogy has a diagonal structure: a probability from state Si to Si
and to state Si+1. The learned, ergodic model does not show a
diagonal structure at all, even though we shuffled the matrix to
have the smallest χ

2 distance to the generated Bakis model. The
learned model is significantly different from the generated Bakis
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model (p ≪ 0.0001, χ
2
= 27863, 19 degrees of freedom), using a

contingency table test on the transition frequencies2.

From this observation we could conclude that it is difficult to
learn the topology of an underlying Markov process. We per-
formed two similar experiments to verify this finding (this time
with N = 10 states because of compute time constraints). The
first variation was done by averaging over several learned mod-
els. This is realised by generating ten Bakis models, generating
300 sequences per model and train an ergodic model on each
set of sequences. The models are shuffled and averaged, and
visualised in Fig. 3.3. Although we are not aware of this extensive
procedure being done in the literature, it appears to be useful to
see whether a diagonal pattern can be found, on average, even
when it is difficult to see in a single model.

It is well known that one requires a large set of training sequences
to estimate the right model. We used this idea in another method
of trying to find the underlying Bakis structure using an ergodic
model. Instead of averaging over ten models, we now use ten
times as much data. This gives the training algorithm more data
to learn the structure from. Fig. 3.4(b) shows the results of esti-
mating the topology from 3000 sequences, that were generated
using the model shown in Fig. 3.4(a).

Both Fig. 3.3 and 3.4 show that trying really hard to force an
ergodic model to find the Bakis structure can result in a slight ten-
dency towards a diagonal structure under highly artificial train-
ing conditions. The desired diagonal probabilities are present
in the learned ergodic models, but the off-diagonal probabilities
are abundant in these models as well. From the diagonals, the
self-recurrent state-transition probabilities are most pronounced.
This shows that it may be very difficult to find the underlying
structure of a Markov process using the Baum-Welch algorithm
(given the specific parameters). From this and pilot studies, we
conclude that it is less difficult to find a diagonal structure for
N = 10 states than for N = 20 (which is more common). We will
verify this in a future study.

2 The Kolmogorov-Smirnov test cannot be used since there is no meaningful
univariate axis to integrate the probabilities (Babu and Feigelson, 2006).
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(a) Target (Bakis) model (b) Learned (ergodic) model

Figure 3.2: Transition probability matrices. After generating a model of N = 20
states, Fig. 3.2(a), 300 sequences were generated with this model. A
new model was trained on this data, and after shuffling the learned
model such that it is closest to the original model, we can see that
it has not learned the topology, Fig. 3.2(b). A probability of 0 is
rendered as white, a probability of 1 as black. χ

2 distance = 48

4 the importance of temporal modelling

We are also interested in what happens when we remove the
temporal information from the transition matrix. This means that
we create a flat topology: all transition probabilities are equally
probable: aij =

1
N , where N is the number of states. During train-

ing, the transition matrix will continuously be made uniform
(i.e., flat) in each iteration. This is necessary because the observa-
tion probabilities may no longer be correct when adjusting the
transition probabilities after training. The flat topology can be
viewed as an orderless “bag of states”. We will now compare
how well models with this topology compare to models with a
Bakis or ergodic topology.

In this experiment we train an HMM on discrete features, ex-
tracted from handwritten word images. The dataset uses a single
handwritten book from the collection of the Dutch National
Archives (van der Zant et al., 2008a). We use two features: frag-
mented connected component contours (FCO3) and a sliding
window, both quantized using a Kohonen self-organizing feature
map (SOFM, see Kohonen, 1987).
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(a) Target (Bakis) model (b) Learned (ergodic) model

Figure 3.3: After generating ten models with the number of states reduced to
N = 10, per model 300 sequences were generated, otherwise similar
to Fig. 3.2. New models were trained on each of these 300 sequences
and the models were averaged. Fig. 3.3(a) shows the average model
of the generated models, while 3.3(b) shows the average learned
model, with a vague tendency towards diagonal state-transitions,
mostly the self-recurrent transitions, while the next-state-transitions
show a less pronounced pattern. Average χ

2 distance = 16

For the FCO3 feature, the image is broken up into a sequence
of fragmented connected component contours (Schomaker et al.,
2007). Each of these contours is then quantized into a discrete
index of a SOFM of 70 × 70 nodes. This means the lexicon con-
sists of 4900 symbols. We have selected 130 classes with at least
51 training instances, with a total of 30 869 labelled instances. Be-
cause the average length of the words was 4.4 FCO3 observations,
the number of states was chosen to be 3.

The second feature is extracted using a sliding window of 4
by 51 pixels, centered around the centroid of black pixels over
the entire word zone. The SOFM for this feature, with 25 × 25
nodes, was a lot smaller than the FCO3 feature map, due to time
constraints. Centering around the centroid with a height of 51
pixels means that the outstanding sticks and (partial) loops of
ascenders and descenders are still preserved, while reducing the
size of the image considerably. We limited the number of classes
in the experiments with this feature to 20, with a total of 4 928
labelled instances. The average length of observation sequences
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(a) Target (Bakis) model (b) Learned (ergodic) model

Figure 3.4: Instead of averaging over ten models as in Fig. 3.3, we now use ten
times as much generated sequences to train a single model (3000
sequences). We see that there is a small tendency towards diagonal
(Bakis-like) state transitions, but it is not very strong. χ

2 distance
between the two distributions = 14

for the sliding window feature was 65.9 observations, which led
us to use N = 27 states3.

For classification, an HMM λ is first trained on the instances
of each class, and then classification can be performed using
argmaxλ∈Λ[log P(O∣λ)], where Λ is the set of all trained models
and O is the test sequence. To investigate the role of the state-
transition probabilities, we perform the experiments with three
topologies: Bakis, ergodic and flat, which is the topology where
all transition probabilities are equally probable. We perform the
experiments on both features using 7-fold cross validation, with
our own implementation, jpHMM.

Results The results are summarised in Table 3.2 and 3.3. We
can see that the results of classification with the FCO3 feature are
very close together (and not statistically significant, with ANOVA,
p > 0.05). There is a significant difference in the classification
performance using the sliding window feature (ANOVA, p <

0.001), but the drop in performance is not as dramatic as would

3 The increase in number of states is most likely the reason for the increased
time necessary for training
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Table 3.2: Results of the FCO3 experiment. Performances reported are averages
over 7 folds, with 130 classes and at least 51 instances per class in
the training set. As can be seen, all topologies perform around 60%.
Flat models do not perform significantly worse.

Topology Classification performance
Bakis 59.9% ± 0.9
Ergodic 59.5% ± 0.9
Flat transition probabilities 59.1% ± 0.8

Table 3.3: Results of the sliding window experiment. Performances reported
are averages over 7 folds, with 20 classes and at least 51 instances
per class in the training set. Differences between the topologies are
statistically significant (p < 0.001) although the difference between
the flat and ergodic topologies is not as dramatic as expected (Please
note that in the Flat condition of the transition matrix, temporal
information is completely uniform).

Topology Classification performance
Bakis 75.2% ± 2.0
Ergodic 78.5% ± 1.2
Flat transition probabilities 71.1% ± 1.3

be expected from the removal of temporal information in the
Markov paradigm.

Please note that the HMMs were used as a measurement tool to
find differences between transition models. They have an average
performance, avoiding ceiling effects. Also, the FCO3 feature is
a feature developed for writer identification, not handwriting
recognition per-se. The sliding window feature could be fine-
tuned further by changing the size of the Kohonen map, the
window, the number of states, etc. In this experiment we are
interested in evaluating HMM topologies, not in maximising the
recognition performance.
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5 discussion

We set out to reevaluate hidden Markov models, by creating
a benchmark for discrete HMMs, and running experiments to
investigate the importance of the transition matrix.

Using the benchmark, we found that for discrete observations, all
common HMM tools have similar performances. Furthermore,
we can now measure the difficulty of discrete data, by comparing
the performances of discrete HMMs with the performances of
the benchmarks with different degrees of difficulty. In the future
we want to extend the current study with continuous density
HMMs as well.

While it is barely presented in the literature, the fact that the
transition matrix is of a smaller importance than the observation
probabilities is well known from personal communications at,
e.g., conferences. We have done two experiments to establish
the importance of the transition matrix, and found that indeed
the observation probabilities have a large impact on recognition
performance. The results of these experiments showed that (a) it
is hard to learn the correct, known topology of the underlying
Markov process and (b) that classification with the temporal in-
formation removed from the HMMs can also result in reasonably
performant classifiers.

Regarding (a), it appears that the Baum-Welch training method
is not very reliable to estimate the underlying transition structure
in the data. As noted in (Figueiredo and Jain, 2002), EM is
brittle and very sensitive to the initialisation process. We have
shown that the Baum-Welch method was unable to find the Bakis
topology from generated data when initialised as a full Ergodic
model. We have previously studied initialisation of models to
prevent local maxima (Bhowmik et al., 2011), but this still requires
a lot of human modelling effort, specifically for each problem
variant.

Regarding our finding (b), that classification with temporal infor-
mation removed can result in performant classifiers, we believe
that the observation probabilities are very important. This sup-
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ports our view that the quality of the features may require more
attention than the aspect of temporal modelling. From a more
scientific point of view, it is still a challenge to adapt the Baum-
Welch estimation algorithm to correctly estimate the Markov
parameters of an observed sequential process.

Even though these findings expose limitations of HMM and its
training procedure, the fact that recognition performance is not
degraded dramatically when removing temporal information
from HMMs implies that dynamic programming (i.e., the opera-
tional stage) is a strong principle. Also, the Markov assumption
remains appealing from a theoretical perspective.

Given these considerations, we feel 1) that it may be misleading
to stress the hidden aspect of HMMs, because of the relatively
minor role the hidden states play in achieving good performance,
2) the Baum-Welch algorithm should be replaced with a less
brittle method, and 3) although the HMM principles mentioned
above are strong, there are many tricks of the trade, that are not
treated well in literature (see also the Appendix).

postscript

In the preceding two chapters of this dissertation, we have looked
at assumptions in HMMs, from a machine learning and a feature-
representation perspective. It appears that properly learning the
parameters of a Markovian process is not straightforward. It
has been hard to replicate state of the art HMM results with the
datasets that are available in a large operational system such
as Monk. One of the causes of lower performances on these
datasets is bootstrapping: Adding new collections to the system
frequently means starting from scratch, since no labels are avail-
able and the script is very different from other collections. There-
fore, the Monk system uses various feature-extraction techniques
and machine-learning methods, each with their own strengths.

While representation and learning methods are core components
of a search engine for historical documents, they only work prop-
erly when there are enough labelled instances in order to train
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them. Furthermore, labels are essential in order to assess the
quality of the techniques. Researchers frequently use pre-existing
labelled datasets to improve existing techniques or develop new
methods. Consider for example the many competitions and
benchmark datasets that are referred to in handwriting recogni-
tion and machine learning literature (Clausner et al., 2018; Strauß
et al., 2018). These are useful to be able to compare different
approaches, but it is easy to lose sight of the actual use-cases—in
the case of Monk, the use-case is a search engine for historical
document collections that are sometimes obscure and scarcely
labelled.

Bootstrapping and the need of (a lot of) data are fundamental
issues that should be addressed in any form of current (deep)
machine learning systems. Because certain methods work better
in the bootstrapping phase than when there are plenty of labelled
instances across all classes, we believe that it is a good idea to
apply the methods in an iterated fashion. Furthermore, we
believe it is a good idea to let the machine help in the labelling
process such that the most relevant instances are considered first.
This is more efficient than labelling images from left to right, top
to bottom. We therefore consider the handwriting recognition
process to be a loop instead of a pipeline: In Monk, labelling is
iterative and in each iteration new images are presented.

The iterative application of labelling can be compared to the
“harvesting” of labels: By ordering the unlabelled images in such
a way that the process can be performed efficiently, a snowball
effect can be created. Such an effect can be marked by large
jumps in the amount of labels added to the system. The jumps
are created by allowing the annotators to quickly label a lot of
images in one go. When a suggestion for the labels is provided
and the user interface allows you to acknowledge these labels
all in one go, the model improves, which in turn improves the
quality of new labels, which finally allows for more labels to be
added with a few clicks.

In Monk, the user interface for quickly labelling images is a hit
list. The images are arranged in a list, usually presented in a table,
that match a certain class. This list is ordered in such a way that
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the images at the top are good enough to be acknowledged to be
of this class. The interface then has two options: accept the first N
labels, or manually select all images that should have their labels
be accepted. In the bootstrapping phase, it is frequently observed
that the latter method is used by the human labellers, due to the
classifier not being able to accurately find enough samples, while
in later stages, the “snowball” (a critical mass of {image, label}
tuples) has gained enough traction to provide enough samples
to fill the first page with correctly labelled images.

The Monk web-based labelling system has been invaluable to
the collection of labels in a number of rare manuscripts. This
allowed the researchers to improve their methods in tandem
with the improvements of the labelling of the collections. New
performance indicators are needed that allow researchers to see
how their methods affect the quality of the hit lists. The default
method of a mean average precision (MAP) is not sufficient to
get an indication of the quality of highest ranked samples. The
next chapter will study hit lists and the functions that need to be
optimized in further detail.
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Abstract

Hit lists are at the core of retrieval systems. The top
ranks are important, especially if user feedback is used
to train the system. Analysis of hit lists revealed counter-
intuitive instances in the top ranks for good classifiers. In
this study, we propose that two functions need to be opti-
mised: (a) In order to reduce a massive set of instances to a
likely subset among ten thousand or more classes, separa-
bility is required. However, the results need to be intuitive
after ranking, reflecting (b) the prototypicality of instances.
By optimising these requirements sequentially, the num-
ber of distracting images is strongly reduced, followed by
nearest-centroid based instance ranking that retains an in-
tuitive (low-edit distance) ranking. We show that in hand-
written word-image retrieval, precision improvements of
up to 35 percentage points can be achieved, yielding up
to 100% top hit precision and 99% top-7 precision in data
sets with 84 000 instances, while maintaining high recall
performances. The method is conveniently implemented
in a massive scale, continuously trainable retrieval engine,
Monk.

1 introduction

In handwriting recognition, classification is often performed
using statistical methods (Duda et al., 2001; Bunke, H., 2003).
The class indexed i with the highest posterior probability given
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Figure 4.1: First 25 instances in a hit list of the word ‘Zwolle’. Original test set
performance: Accuracy: 99.2%, precision: 97.6% and recall: 97.6%.
Note the faulty instances in the top ranks, upper row. In a realistic
test condition with 12k distractors, actual precision is as low as
2.8%.

the sample to be classified is chosen as the result of the classifier:

HypothesisX = argmax
i

P(Ci∣X) where i ∈ {1, Nclasses} (4.1)

However, when the goal is word search, rather than automatic
text transcription, the user is more interested in retrieval of word
instances. Instead of a single classification, the result is a sorted
hit list H. Each instance indexed j is ranked with respect to the
prototype or class-model corresponding to the search term:

H = sort
j
(P(Xj∣C)) where j ∈ {1, Nexamples} (4.2)

Retrieval is usually performed on a large collection of instances,
and only the top of the sorted list, representing the best ranking
instances, is considered as interesting. Under such a condition,
a large number of classes and a massive data collection can
pose a problem, since for each query there is a large number of
distractors, i.e., concerning instances from all classes, other than
the target class.

This becomes apparent in retrieval engines for handwritten words
in historical collections (van der Zant et al., 2008a). In the Monk
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system, twenty books of ≈1000 pages each contain millions of
word zones or word candidates, and the lexicon is in the order
of tens of thousand word class models. From the tradition of
handwriting-recognition research, it seems reasonable to start
with the classification problem (Eq. 4.1), using good shape fea-
tures and a powerful classifier, such as, e.g., hidden-Markov
models (Marti and Bunke, 2000; Artières et al., 2007) or the
support-vector machine (Vapnik, 1982; Boser et al., 1992). For a
word-mining task, such a classifier may be trained to discrim-
inate a particular word class, and a ranked word list may be
constructed, e.g., using the signed SVM discriminant value dSVM
for sorting. The basic assumption then is, that the distance from
the margin, i.e., from the instances in the distractor classes, will
be a good criterion for constructing a ranked hit list for a target
class. However, upon applying this approach, we observed an
interesting phenomenon in the resulting hit lists. As an exam-
ple, Figure 4.1 shows the top-25 instances in a hit list for the
word ‘Zwolle’. The performance for the word classifier on the
entire training set was 100% accuracy, with a 97% accuracy on
an independent test set (k = 7 folds, σ = ±1%). Following reg-
ular testing procedures for SVMs, the training and the test sets
were of similar size, each containing a quarter of positive exam-
ples (typically 50) and three quarters of negative or distractor
examples. However, the resulting hit list contains a number of
counter-intuitive samples (e.g., speckle images) in the early ranks,
followed by a strand of correct classifications which is followed
by a transitional stage of occasional errors.

The impression that a problem exists is confirmed by a larger-
scale analysis of the results (Table 4.1), also using a realistic
large set containing ≈ 12×103 distracting word instances in the
test set. The results for accuracy and recall on the realistic data
set confirm the hopeful expectancies which were raised by the
regular training and test sets. However, the precision of the output
drops abysmally, to about 1% in the worst cases, notably for the
classes with a limited number of training examples (Table 4.1,
lower right). It should also be noted that a number of 12K
distractors (1/1200) is much more realistic than a 1/4 rule which
is commonly accepted in academic testing.
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Table 4.1: Counter-intuitive, low precision results for good classifiers

Accuracy Recall Precision
Set Nexamples Mean σ Mean σ Mean σ

Test 120+ 0.98 0.02 0.97 0.05 0.96 0.07

60-120 0.97 0.03 0.95 0.10 0.91 0.13

35-60 0.97 0.04 0.93 0.15 0.85 0.19

7-35 0.96 0.04 0.68 0.42 0.57 0.40

+12K Distractors 120+ 0.99 0.01 0.97 0.05 0.26 0.26

60-120 0.98 0.02 0.95 0.10 0.06 0.12

35-60 0.97 0.02 0.93 0.15 0.03 0.06

7-35 0.97 0.04 0.68 0.42 0.01 0.05

It is clear that something is needed to improve on the per-
formance. User appreciation of hit lists is of paramount
importance in live and continuously trainable systems
that rely on user annotation over the internet, such as
Monk (van der Zant et al., 2008a, 2009). Figure 4.2 shows how
hit lists are used in the Monk system. Upon giving the first
handful of (bootstrap) examples, a usable machine-learning sys-
tem should be able to produce an acceptable ranking such that

Label

Monk

Human

Label store

Learning
Retrieval
Engine

Hit list

Figure 4.2: Schematic overview of how users utilise the hit lists to label new
word images in a continuously learning retrieval engine (Monk).
A hit list is presented to the user, who produces a label for an
unlabelled word. This label is stored in the label store, which is
then processed by the retrieval engine to produce a new hit list.
The interface facilitates the quick labelling of a large number of
instances that match the query word. See also Figure 1.6 on Page 10
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newly found instances of the same class can be easily labelled.
The above, concrete observation thus gives rise to a more funda-
mental question: How is it possible that accuracy is not a good
predictor of precision in a retrieval context?

In this study, we will 1) analyse the reason for unexpected, low
precision in presumably well-performing classifiers; 2) explore
a number of methods to counteract the precision drop and 3)
present a convenient approach using nearest-centroid matching,
with results in a similar ballpark as the abovementioned SVM
approach, at the same time however, avoiding expensive training
on the tens of thousands of word classes.

2 separability versus prototypicality

Problem: The SVM is a discriminative classifier, optimised for
classification (Eq. 4.1). The class of an unknown sample X (Fig-
ure 4.3) is decided by determining on which side of the decision
boundary β the sample falls. For retrieval purposes, it appears rea-
sonable to use the distance to the boundary, d(X, β), as a ranking
measure: the farther the instance is located from the boundary,
the more certain an SVM classifier is of the classification.

Unfortunately, this gives unexpected results, such as shown in
Figure 4.1 for the query word ‘Zwolle’. Instances that are ranked
at the top (@speckles) appear to be counter intuitive to a human
user. It seems that there are two problems: 1) the distance to the
boundary is not an intuitive measure, and 2) a fairly large number
of distractors causes noise in a hit list, and consequently, a lower
precision. The implication is that enlarging the dataset increases
the probability that incorrect instances occur even before the first
correct hit. This has a large impact on the user appreciation and
is hard to explain. More informally: Many hits do not appear
similar to the user’s expected, canonical prototype for the query.

Proposed explanation: In order to give a plausible explanation
of this phenomenon, we present a schematic, two-dimensional
overview. The position of an instance X in Figure 4.3 has a
large distance d(X, β) from the boundary β (which is desirable).
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¬A

d(X, β)

d(X, λ  )A

λA

p(d(X, λ  ))A

Decision
boundary β

Figure 4.3: Separability vs. Prototypicality: For an unknown instance X, a
large distance d(X, β) from a margin β does not imply a short
distance, d(X, λA) from the prototype λA

However, the instance X is not very prototypical, being located
far from the known instances of the target class A. In other words,
the distance of the instance X to the prototype, or centroid of
class A, d(X, λA), is large.

The support-vector machine training mechanism has an empha-
sis on separability: the ability to categorise and separate class in-
stances from non-class instances. This ability is usually achieved
by evaluating the computed signed distance of an unknown sam-
ple to the decision boundary d(X, β) which indicates on which
side the instance X falls. However, by focusing on separation, an
important aspect of pattern recognition is neglected: The phe-
nomenon of prototypicality which concerns the similarity of an
instance to the canonical class prototype, for instance, measured
as the distance to the centroid or prototype of the class d(X, λA).
Quantitatively, prototypicality can be defined as p(d(X, λA)) and
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is also the underlying rationale for Bayesian classifiers, exploit-
ing the high density of feature values around the mode of their
distribution, as opposed to the SVM. It is important to realise
that the prototypicality of instances directly affects the ease with
which new training examples can be elicited from users in a con-
tinuously learning retrieval system. The degree of prototypicality
of the hit list directly affects the gain factor in the feedback loop
of the label harvesting system that is presented in Figure 4.2.

For a search and annotation tool of handwritten historical doc-
uments, separability and prototypicality need to be optimised
simultaneously. It can be argued that similar requirements play
a role in general content-based image retrieval, too (Datta et al.,
2008; Schomaker et al., 1999). However, most classifier methods
optimise for one property, not both. The solution proposed in
this study, is to combine classifiers in a two-stage process. The
classifier that optimises separability is used in the first stage to
divide the instances and produce the most likely class C for an
unlabelled instance. The goal is to reduce the number of distrac-
tors for the second stage. More specifically, the set of distractors
of an instance classified as C will be a considerable reduction of
the set of all instances.

All instances labelled as C are then gathered for the second stage,
where all instances are re-ranked or re-sorted with a secondary
feature or method, one that optimises the ability to rank instances
according to prototypicality. This ensures that if an instance is
classified as class C in the first stage, but is an atypical result
(such as the first few results in Figure 4.1, i.e., the speckles),
the instance will end up at a later position in the hit list than
other, more prototypical examples. Similar problems will occur if
reject criteria need to be defined while using the SVM (Mouchère,
2007), or when there are very few negative examples to train
from — for example, in a machine diagnostics problem (Tax,
2001). For a schematic overview of the entire re-ranking process,
see Figure 4.4.

The results from the SVM experiment in the introduction sug-
gest that a larger number of distractors has a negative effect
on retrieval precision. It should be noted that the experiments
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Unknown word

Classify Rank

Model

Hit listAll instances
classified as

"April"

S1 S2

Figure 4.4: Schematic overview of the re-ranking process. The first stage (S1)
shows that a word is classified first, and gathered together with
other instances that have been classified the same. These instances
are then ranked (S2), according to their prototypicality, to produce
a ranked hit list.

in this study are conducted in a laboratory setting, using only
human labelled instances. In a real-world setting, the problem of
distractors will even be worse: the problem space is then heavily
populated with non-word images and other noise. For example,
in Monk, over all collections there are 22×103 classes, with over
124×106 word images, including rejectable candidates and noise.
These numbers indicate the massive size of the current exper-
imental test bed. Instead of pre-cleaning the data, we assume
a rigorous, machine-learning approach where as much of the
problems are solved by the base classifier and not by the use of
overly specific hand-coded preprocessing heuristics. That means
that problematic patterns have to be labelled as well. In Monk,
there are several classes that are indicated by a label starting with
@, and can indicate whether this is, e.g., a table-line, speckles or
other noise.
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Figure 4.5: Probability of finding the first correct hit in ranks 0 to r for raw
and ranked SVM output (Nfolds = 7). The bars give the standard
deviation, which are only clearly visible on the SVM, sorted by
dSVM results. Note the strong improvement due to secondary
ranking for all ranks but especially for the top hit accuracy at r = 0.
Feature 2 outperforms Feature 1 significantly. The circle is used as
a reference point in the text.

3 methods

Figure 4.5 shows the probability of finding the first correct hit
in the ranks 0 to r of the hit lists generated in the preliminary
study from the introduction. It is apparent that the probability
of finding the first correct hit in the first five ranks is roughly
45% (indicated by the circle in Figure 4.5), when using the SVM
discriminant value for initial (tier 1) ranking. By reordering the
images using a different feature, the performance can be im-
proved, such that the first correct hit is found in the first five
ranks 80% of the time (Figure 4.5, upper left). This is hopeful, but
this is not enough and the hit list still contains counter intuitive
results in the top ranks. There are other ways of improving the
tier-1 performance. For example, multiclass SVMs, using decision
trees (Takahashi and Abe, 2002), could improve the classification
accuracy before ranking, which seems to be beneficial, but it has
the downside of requiring a large number of training instances
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for each of the more than 104 classes. Approaches like Gaussian
mixture models (GMMs) or hidden Markov models (HMMs)
can also improve the classification accuracy, but also require a
large number of training examples. Benefits such as multi-peak
distributions can be achieved with more simple techniques, such
as (k-means) clustering. The Monk system is a continuous, ‘24/7’
training system: Labels are continuously added or changed, and
it would be too time consuming and require human monitoring
to train and retrain SVM classifiers when the system is updated.
Nearest-centroid classifiers, on the contrary, can be easily up-
dated with new knowledge by just adding a new feature vector
to the set of training samples and averaging the samples to get
the centroid. Rather than constituting a simplistic old-fashioned
method, nearest-neighbour approaches are at the core of im-
portant advances in computational linguistics (Daelemans and
van den Bosch, 2005) and image retrieval (Giacinto, 2007; Jégou
et al., 2010). The principle of central tendency leads to an intrin-
sic settling of centroid models as more examples are added. In
case of multimodal distributions, occurring for example when
there are multiple writing styles per class, clustering can be used
to represent the class variants, e.g., by the k-means algorithm.
Considering these multiple arguments, in this study, we will use
a nearest-centroid classifier for the classification stage, instead of
SVMs.

The choice of word-based image retrieval instead of character-
based approaches is based, firstly, on the observation that in
some historical document collections contractions and loops are
used to suggest characters in order to speed up writing (see the
marked images in Figure 4.6). This makes creating a mapping
between letter identity and character shape non-trivial. Secondly,
due to the large variety of scripts and languages, most character-
based approaches would need to be fine-tuned for each script
and language, leading to long projects to process new collections
(“each book its PhD project”). Our goal is to collect huge num-
bers of labelled word images first over several collections and
historical periods in order to develop character-based classifiers
at a later stage, when necessary.
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Figure 4.6: This variety of styles and shapes in a realistic collection illustrates
that ‘optical character recognition’ of handwriting, by some form of
sliding window over a word, is only applicable to a small subset.
Many patterns are abbreviations, linguistic contractions or suffer
from deformed, ‘suggested’ characters (marked with asterisks).
In the absence of character models, the total-word image on the
contrary provides a rich and redundant pattern in all cases, and
can be labelled easily by volunteers.

As discussed in the introduction, classification is performed by
finding the class with the highest probability given the data.
Since nearest neighbour classifiers are distance-based, the class
with the highest probability is the class with the smallest distance
to the instance:

argmax
i

P(Ci∣X) = argmin
i

d(Ci∣X) (4.3)

Similarly, retrieval is performed by ranking all instances based on
their distance to a class-model. Two features were experimentally
chosen from a set of features to be used in the experiments. The
exact implementation of both features is outside the scope of this
article; different feature methods could be used instead without
changing the actual re-ranking process. The first feature is based
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on the biologically inspired features introduced in (van der Zant
et al., 2008a), and the second is a more simple feature consisting
of the normalised and scaled image. The dimensionality of the
former feature is 4358, while the scaled image has a size of
100×50, yielding a comparable dimensionality of 5000. In both
feature types, the feature vector consists of probability values,
adding up to one.

Two methods of retrieval will be compared: 1) direct retrieval:
ranking, in a single step, all instances from the test set with the
distance of the image to the centroid of the target class, and 2)
the two stage re-ranking method as described in the previous
section: do recognition on all instances first, then for each class
C rank its candidates. The re-ranking method can be done in
four ways using the two features: recognition with either feature
and ranking with either feature. All four combinations are used
to study the effect of using a different, secondary feature in the
re-rank phase.

There are a number of measures to be used for comparing recogni-
tion and retrieval: (a) For recognition, we define top-1 recognition
accuracy as: The probability that the nearest-centroid is of the
correct class. For retrieval, the standard measures (b) precision
and (c) recall will be considered, as well as (d) the average edit
distance in the top-7 of each hit list.

Accuracy (a) is defined as the percentage correctly classified
instances:

Accuracy =
Ncorrect
Ntotal

(4.4)

with Ncorrect is the total number of correctly classified instances
(in the top-1), and Ntotal is the total number of instances. We are
interested in accuracy because it can show which feature is a
good choice for the first stage: features and methods with a high
accuracy are well suited for classification.
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Precision (b) is defined as the proportion of correctly retrieved
instances of class C in a fixed hit list H, with target size n, and
can be computed with

Precision in top-n =
Ncorrect

min(n, ∣H∣) (4.5)

where Ncorrect is the number of instances with the correct label
in the top-n and ∣H∣ is the number of items in the hit list1. The
minimum of n and ∣H∣ is used because the hit list can be smaller
than the target size of n items.

The recall measure (c) is defined as the proportion of instances
of class C that can be found in the hit list; formally, it can be
defined as

Recall for class C =
Nobtained
Ntargets

(4.6)

where Nobtained is the number of instances retrieved with class C,
and Ntargets is the total number of instances with class C in the
given test set. The reported precision and recall are accumulated
over all classes as proportions.

The concept of prototypicality cannot be seen in isolation from
the application context. More specifically, users of a retrieval
engine for historical handwritten words will have an evaluation
of the quality of a hit list. In other words, P(Xj∣C) must reflect
an underlying measure of similarity. In information retrieval,
relevance feedback is used to estimate user appreciation (Salton
and Buckley, 1997). Relevance feedback is outside the scope of
this study, but to estimate the user appreciation, we use average
edit distance as the fourth performance measure. The assump-
tion is that if the text distance (in ‘ASCII’) between the query
and the actual label of an instance is small, the hit list will be
intuitive, meaning that it reflects the users measure of similarity
well. The specific edit distance implemented in this study is the
Levenshtein distance (Levenshtein, 1966).

The data set is drawn from the historical document collection
from the Dutch Queen’s Office (see also van der Zant et al.,

1 According to the Wikipedia article on precision and recall (http://en.wikipedia.
org/wiki/Precision and recall, last accessed 23 January 2013), this is also called
“precision at n” or “P@n”

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Precision_and_recall
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2008a), or “Kabinet der Koningin” (KdK). The complete data
set has over 13×103 classes. However, in order to do a 7-fold
cross-validation experiment, only the 1404 classes with seven or
more human labelled word instances will be considered. These
classes will be divided into four categories, based on the number
of instances: 7 up to 35 instances, 35 up to 60 instances, 60 up
to 120 instances and 120 or more instances, similar to what has
been done in (van der Zant et al., 2008a). This division is useful
to compare performances when there are few labelled instances,
a lot of labelled instances or in between. In total, there are more
than 84×103 instances used. The experiments are performed on a
cluster of eight Linux machines with 54 cores in total, connected
to a 1.6 petabyte storage, of which the Monk system will use
roughly 0.5 petabyte.

For each line strip, a number of word candidates are selected,
based on the number and size of connected components. This
means that the line is usually oversegmented, which leads to
overlap between images. To avoid that multiple image renderings
belonging to the same word instance end up in both the training
and test set, the fold sets are compiled from exclusive page
sets: fold ≡ page number (mod Nfolds), Nfolds = 7. This has the
additional, realistic benefit that trained words, which are written
in a consistent style within one page, but inconsistently over
the entire collection will not end up in the test set of a fold.
Each fold holds 84 288 instances, of which the test set will hold
1/7th

=̂ 12 041 instances on average.

4 results

We look at two types of comparisons: between re-rank methods
(choice of features) and between average re-rank performance
and direct retrieval (i.e., without re-ranking). Table 4.2 shows
the top-1 recognition accuracy, averaged over all seven folds for
both features. Feature 1 (f1) outperforms the second feature (f2),
especially in the categories of 35-60 and 60-120 examples. Fur-
thermore, the table shows that to accurately classify an instance,
the nearest-centroid classifier needs around 35 training instances.
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Table 4.2: Top-1 accuracy (Nfolds = 7)
Feature Nexamples

7-35 35-60 60-120 120+
Mean σ Mean σ Mean σ Mean σ

f1 0.62 ±.02 0.93 ±.01 0.92 ±.01 0.94 ±.00

f2 0.62 ±.01 0.86 ±.01 0.87 ±.01 0.93 ±.00

Since feature 1 performs better than feature 2, it seems to be the
best candidate for the classification step, as is confirmed below.

Figures 4.7(a), 4.7(b) and 4.7(c) compare the average of the re-
rank methods to the direct retrieval methods. The bars on the
averages show the minimum and maximum value of the re-rank
methods. These results show the gain in performance when
using the re-ranking methods instead of direct retrieval. As
was expected, reducing the number of distractors has a positive
impact on performance.

Analogous to Figure 4.5, Figure 4.8 shows the probability of
finding the first hit in ranks 0 to r for the re-rank method using
feature 1 as the classification feature and feature 2 as the re-rank
feature. The re-ranked method shows a considerable improve-
ment from the direct ranking and the ranked SVM output (the
best performance as reported in Figure 4.5). The probability of
finding the first hit in the first four ranks even approaches 100%.

Table 4.3 and 4.4 show the precision (in the top-1) and recall
figures. In general, these results show that re-ranking with a
different feature can boost performance. The precision in top-7
for the re-rank methods is even higher than the precision in top-1
for the direct method, especially in the 7-35 category. Using
feature 1 as a classification feature and feature 2 for ranking
works best for this data collection, even getting a top-1 precision
of 1.0 (i.e., 100%) with a standard deviation of 0 in the 120+
category.

Overall, the results show that all methods perform roughly the
same when there are enough labelled samples (i.e., in the 120+
category).
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Figure 4.7: Precision and recall performances (at N ≈ 1700 and α = 0.01, con-
fidence is ±3%) and average edit distance of re-rank vs. direct
retrieval. The bars on the re-rank lines show the minimum and
maximum performances of different feature configurations. All
measures are averages over 7 folds.
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Figure 4.8: Probability of finding the first correct hit in ranks 0 to r for the
re-rank method using feature 1 for classification and feature 2 for
ranking, and the direct methods (Nfolds = 7). The bars giving the
standard deviations, are barely visible due to the large numbers of
test instances in each fold (≈ 1700). The lines for both direct ranking
methods are very close together and therefore not distinguishable
from each other. The results show a considerable improvement in
comparison to the raw, non-reranked results (Figure 4.5), especially
for non-ranked SVM: The error at rank 0 is reduced from 29% to
4%, here.

5 conclusions

In the design of a large scale retrieval engine for historical hand-
written manuscripts it was observed that classifier accuracy is
not a good predictor of retrieval precision. Very low precision
performances occurred on good classifiers when using a realis-
tic number of distractors. In retrospect, the choice of using the
signed distance dSVM from the margin for ranking was evidently
suboptimal, but it elucidated two separate functions to be per-
formed: 1) data reduction by optimal separation and 2) ranking
instances in terms of their prototypicality with respect to their
class.

The re-ranking method has two main advantages: the focus on
both separability and prototypicality increases the probability
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Table 4.3: Precision results (Nfolds = 7, σ ≤ 0.03)
Method Nexamples

7-35 35-60 60-120 120+

Precision in top-1
Direct, rank with f2 0.42 0.89 0.93 0.97

Direct, rank with f1 0.46 0.92 0.94 0.97

Re-rank, classify with f2, rank with f2 0.76 0.97 0.98 0.99

Re-rank, classify with f2, rank with f1 0.76 0.97 0.98 0.99

Re-rank, classify with f1, rank with f1 0.79 0.98 0.97 0.99

Re-rank, classify with f1, rank with f2 0.82 0.99 0.99 1.00

Precision in top-7
Direct, rank with f2 0.14 0.52 0.71 0.90

Direct, rank with f1 0.15 0.57 0.75 0.91

Re-rank, classify with f2, rank with f2 0.64 0.87 0.91 0.97

Re-rank, classify with f2, rank with f1 0.68 0.91 0.94 0.98

Re-rank, classify with f1, rank with f1 0.69 0.93 0.94 0.97

Re-rank, classify with f1, rank with f2 0.69 0.93 0.95 0.99

Table 4.4: Recall results (Nfolds = 7, σ ≤ 0.03)
Method Nexamples

7-35 35-60 60-120 120+

Direct, rank with f2 0.35 0.70 0.71 0.74

Direct, rank with f1 0.39 0.77 0.77 0.75

Re-rank, classify with f2, rank with f2 0.63 0.84 0.84 0.88

Re-rank, classify with f2, rank with f1 0.63 0.84 0.85 0.89

Re-rank, classify with f1, rank with f1 0.67 0.90 0.89 0.90

Re-rank, classify with f1, rank with f2 0.69 0.91 0.90 0.91

that the top of a hit list is more similar to the user’s expectation
than otherwise. Secondly, the reduction of distractors lowers the
number of noisy instances in a hit list and is advantageous in
terms of processing demands. As the results presented in the
previous section show, reducing the number of distractors in a re-
trieval experiment improves precision and decreases average edit
distance in the hit list, which we assume will increase the user
appreciation of hit lists. We think that a simultaneous solution of
separability and prototypicality will suffer from a performance
reduction that is typical of Pareto curves in multi-objective opti-
misation, but this is a matter of future research. To investigate
whether we can optimise both separability and prototypicality in
the SVM paradigm, we performed some preliminary tests. These
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tests show that weighing the discriminant value dSVM with the
distance to the centroid of positive examples e−d(λ,X) does not
have positive effects on precision. Future research will look into
other multi-objective approaches involving both separability and
prototypicality.

It appeared to be beneficial for retrieval performance to use dif-
ferent features in the separate stages. While the processing order
is fixed — separation first, ranking second — the selection of
optimal features and machine learning algorithms will depend
on the material. In the KdK data set, precision benefited the
most by using a strong, robust feature for recognition first, and
a secondary feature with a strong image-based component that
works well on collections where words are written fairly con-
sistently. On data sets where the writing varies a lot within a
class, other features or classifier methods may prove to be more
advantageous, including (k-means) clustering to capture the dif-
ferent writing styles. A system like Monk will have several tool
libraries and approaches for diverse material. The optimality
of the parameters for a complete processing pipeline depends
on the ink deposition process, writing style and physical mate-
rial. Improving the recognition accuracy using linguistic models
and contextual information is difficult due to the nature of the
material. While linguistic models offer improved transcription
performances for contemporary texts, previous efforts of using
contextual information (Ritsema van Eck and Schomaker, 2012;
Zinger et al., 2009) proved not to be robust enough for use in our
system because there are no useful corpora available for the doc-
ument collections we deal with. This is due to the abundance of
abbreviations, contractions and named entities that are not found
in corpora of contemporary text. Furthermore, in certain doc-
ument collections, several languages are used, sometimes even
in the same paragraph. Corpora for transcription systems for
contemporary texts usually contain millions of words gathered
from various sources (Zimmermann and Bunke, 2004; Devlin
et al., 2012), which we can not provide for the bootstrapping of
handwriting recognition for the document collections in Monk.
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When a class has enough instances (i.e., the 120+ category), choice
of feature does not seem to have much effect on retrieval perfor-
mance. On the other hand, reducing the number of distractors
by a two-step approach is still beneficial. In the bootstrapping
phase of a retrieval system (i.e., the category of 7-35 training
examples), the choice of feature does have a big impact. Even
small accuracy performance increases have large consequences
in this stage, helping the user to label new instances with little
effort (since Monk presents hit lists in its web-based labelling
interface).

The methods presented in this paper can use all kinds of clas-
sifiers. Currently, nearest-centroid classifiers are used due to
the nature of ‘24/7’ learning, where new labels are being added
frequently. It would be cumbersome to retrain classifiers such as
SVMs every time a new label was added. The SVM has one ben-
efit in the bootstrap phase: its recognition accuracy is better than
the performance of a nearest neighbour classifier. However, the 7-
35 category in this experiment has the most classes by far, which
would be very inconvenient for the training of tens of thousands
multi-class SVMs. This touches on the fundamental difference
between SVMs and Bayesian classifiers. While Bayesian classi-
fiers, including nearest centroid classification, will incorporate
the retention of the degree of prototypicality in the “1 out of
N” choice itself (i.e., p(d(X, λ))), a tree of SVMs capitalizes on
separability, only.

The Monk project has a large number of collections with differ-
ent script types: 15

th (mixed languages, frequent use of word
contractions) and late 19

th century texts (cursive with a lot of ab-
breviations and variation), Qumran scrolls (isolated characters),
captain’s logs (cursive) and even Thai (Surinta et al., 2012) and
Bangla (Bhowmik et al., 2011) texts. The different shapes and
writing styles have different requirements of the features; For
each script, features will be selected to optimise both separability
and prototypicality.

Summarising, we found that the assumption that a good rec-
ognizer will also be good at ranking is not intrinsically tenable.
Two requirements need to be fulfilled. First, a method (feature
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and classifier) is selected based on its ability to separate class
instances from non-class instances. Subsequently, a method (fea-
ture and classifier) is selected on the basis of its ability to rank
instances according to prototypicality, such that the final rank-
ing is similar to the users expectation. This stepwise approach
yielded very substantial improvements in precision, substantial
improvements in recall as well as a substantial reduction of the
edit distance, a measure of word-match intuitiveness. Finally, the
insight that separation and ranking of instances both need to be
optimised may have a broad applicability beyond handwriting
recognition.





5
G E N E R A L D I S C U S S I O N

1 machine learning and representation

The subject of this dissertation is the development of search
engines for historical handwritten document collections. Tech-
niques such as machine learning and image representation are
often being studied in the field of handwriting recognition to im-
prove the accuracy of handwriting recognition systems. Usually,
in order to have fair comparisons, standard datasets are used for
the performance evaluation. While most techniques work very
well on datasets such as MNIST or the letters by president George
Washington, their application is much less straight-forward on
collections with more difficult material such as those of the al-
derman scrolls of the city of Leuven, as discussed in Chapter 1.

The Monk system (Schomaker, 2016) is a search engine and data
mining tool for historical document collections. Many differ-
ent collections are available in Monk, ranging from rather neat
collections, written by a single writer, to very difficult-to-read
collections from medieval times. These collections are usually
interesting to humanities researchers or even the general public.
Due to the nature of these collections, we have observed some
notable differences between applying machine learning tech-
niques on the neat, academic datasets, and the raw datasets that
are being made public by archives worldwide (see for example
Figure 1.2 on page 3 and Figure 4.6 on page 67).

79
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One of the techniques we observed with different results between
academic benchmarks and historical material is hidden Markov
modelling (Chapters 2 and 3), which has a long history in hand-
writing recognition systems as well as other applications. HMMs
model time series using a hidden state transition probability
matrix and per state a model of the observation probabilities.
The application of HMMs on the difficult datasets in Monk has
not resulted in accuracy scores that are expected based on the
literature. We performed two studies to understand the differ-
ences in performance. The first study deals with the training
method while the second study concerns the understanding of
the different components of these models.

1.1 Baum-Welch training of HMMs

The process of training HMMs with Baum-Welch is well known
for its tendency to get stuck in local optima, resulting in less-than
optimal models. The idea that sparked the study in Chapter 2

is that the initial model, which is randomly selected to start
the training, has a big impact on the final performance. We
therefore studied whether models converge to the global, rather
than a local, optimum if the starting point is already closer than
other, non-converging models. To study the training procedure,
we generated an artificial data set: A randomly chosen model
with known properties generated data sequences on which new
HMMs can be trained. The model that is used to create the
dataset is then considered the global optimum for this particular
set and can be compared to the trained models.

The main conclusion from the experiments in Chapter 2 is that
the χ

2 distance of a trained model to the global optimum is not
a good predictor of likelihood. At first glance, this is surprising
because one would expect that models that are similar to the
global optimum would also show a performance similar to the
model at the global optimum. Furthermore, the experiments
show that it is very hard for the Baum-Welch training algorithm
to converge to a point close to the global optimum without
guidance. However, when we know either the state transition
probabilities or the observation probabilities beforehand, the
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resulting models are very close to the global optimum. This is
relevant because it shines some light on the conditions in which
HMMs will perform well.

1.2 The relative importance of transition vs. observation
probabilities

When we know either the state transition probabilities or the ob-
servation probabilities, we can “clamp” these parameters, which
means that they are fixed while still training the other properties.
This greatly reduces the number of parameters to be learned.
The fact that clamping has a big positive effect on the ability
of the training algorithm to find the global optimum, raises an
interesting question: What is the most critical design element of
an HMM? The transition probability matrix A or the observation
probabilities B? This is the main question in Chapter 3, and is
also studied by using generated data from a known model. This
time, the model has a very specific topology: The Bakis topology
dictates a diagonal structure of the transition matrix, leaving
most probabilities in the matrix Pij = 0. It is shown that the
Baum-Welch training algorithm has difficulty finding this clear
diagonal structure. Furthermore, using “real” data, extracted
from handwritten word images, it has been shown that removing
all temporal information (and clamping the transition matrix to
a uniform distribution) from the models, does not result in as
drastic a drop in performance as one might expect.

The main conclusion from Chapter 3, that the observation proba-
bilities seem to have a larger impact on the model performance
than the transition probabilities, has some interesting implica-
tions for a search engine for handwritten documents. It means
that special attention should be given to the representation of
word images. One of the main challenges is the bootstrapping
phase of a collection, where there are very few labelled instances.
In these cases, it is very hard to automatically learn the best rep-
resentation of a word image, let alone train both representation
and classification at the same time like in deep learning. It makes
sense to create the feature representation and selection methods
by hand in cases where there are very few labelled images.
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2 labels

The discussion in the first two chapters has been around ma-
chine learning and representation. We have discussed why it
is not straightforward to learn the parameters of a Markovian
process and that the representation of handwritten word im-
ages is important for HMMs. However, in order to learn from
known examples and to generalize to unseen examples, it is
important to have a large amount of labelled images, i.e., tuples
of (class label, word image). Collecting these tuples can be quite
labour-intensive. Frequently, machine learning experts presume
the existence of labelled data and only focus on either the (deep)
machine learning or the feature representation of the word im-
ages. Labelled data has not been a big problem in the studies on
HMMs in Chapters 2 and 3 of this dissertation because the data
was mostly generated artificially, and the classes were therefore
known. However, the extensive datasets of handwritten word
images had to be labelled by hand to create a proper ground
truth.

In a system such as Monk, new datasets are added on a regular
basis. These new datasets do not contain labels yet and are very
diverse in script-type and picture quality, making it difficult to
build of off other document collections. Transfer learning (Pan
et al., 2010) would generally be useful in these cases, as long
as the source and target domains are related, i.e., the feature
spaces are not too different. However, the differences between
collections in the Monk system are quite large. This means that
it is required to ‘bootstrap’ new collections: starting with a small
number of labels and quickly building the necessary body of
knowledge about a collection. By aiding the human annotator, it
should be possible to gain momentum in the labelling process.
Quick accumulation of new labels, often in a group of related
classes, also known as a snowball effect, is something that is
implemented in the core processes of the Monk system. The
snowball effect is usually marked by sudden jumps in the number
of added labels (see Figure 1.8, page 14.)

In Chapter 4, a solution for the problem of bootstrapping and
quickly building a large database of labelled data is explored
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that uses hit lists. This works by generating a list of images a
classifier determines to belong to a particular class. The system
then ensures that the images that are most likely to be correct
are ranked at the top. The annotator uses this fact in the hit-list
interface to label yet unknown images quickly by marking the
top n images to be correct. This method has been shown to allow
the sudden jumps in number of added labels. Correcting a label
provides a large amount of new knowledge to the system as
well: Correcting mistakes either suggests new classes or exposes
a confusion between two existing classes.

Another method for selecting instances that should be labelled
for the largest impact on the classification performance is active
learning (Settles, 2009; Baum and Lang, 1992). The selection pro-
cess in active learning is based on the idea of finding the images
for which the classifier has the least evidence of belonging to
a certain class (i.e., has the most confusion). This works well
for discriminative learning, because at the decision boundaries,
new knowledge has the biggest impact. However, a different
approach might be better suited for Bayesian or generative meth-
ods, where each class is represented by its own model and the
classification is solved by a ‘winner takes all’ principle (usually
by applying the argmax function on the probabilities per class).
In this case, the better a single model represents samples of that
class, the higher this model will end up in the final ranking.
See also Figure 5.1. This is related to the concept of density
weighting in active learning (Settles and Craven, 2008) where
the instances to be queried are weighted by their distances to
all other known instances, but this does not necessarily take the
class into consideration.

Hit lists have been effective in labelling new word images. A few
guidelines can be established for building an efficient snowball
effect. First, the images should be ranked from most likely to
least likely belonging to the class of the hit list. This ensures that
the top n instances can quickly be assessed on their correctness.
Secondly, the interface should allow for quickly labelling a large
number of images at once, preferably by selecting the first n
images and accepting the label the classifier has assigned to these
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(a) Discriminative models (b) Generative models

Figure 5.1: Discriminative models (a) are separated by a decision boundary.
The objective is to get this boundary as accurate as possible. Active
learning works well here because it samples around the current de-
cision boundary. Generative models (b) consist of multiple models
for each class, in this case represented by a Gaussian. Applying
active learning here would mean sampling around the area between
the classes, skewing the distribution per class.

images. Thirdly the images in the hit list that are not of the
correct class, should be ‘intuitive’, such that they are not totally
different from the correct instances of that class. Apart from
the difficulty in explaining very obvious mistakes to the user,
labelling mistakes have a much smaller impact when the differ-
ences are small. Furthermore, classes that are related to each
other can then be spotted and labelled as such more easily. Using
a hit list-based approach is preferable to a linear process, where
word images are annotated from left to right, top to bottom,
because a hit list allows the user to inspect many occurrences of
a word in a single screen. This aids the recognition of misclas-
sifications and allows the annotator to scan instead of typing in
every label by hand.

In order to get hit lists with quality results in the top ranks,
a two-step process is needed. This process alternates between
classification and ranking. Each phase can use their own machine
learning and representation methods. The two-step process,
together with an increasing amount of labelled data, will improve
the hit lists over time and yield even more useful labels. This
way, we can ensure that the right method for the right job is
used, but also that once one method does not yield enough
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new labels any more, a different method can be used instead.
This interplay between different feature extraction methods and
iterated application of building hit lists can be compared to the
Fahrkunst elevator1 in ancient mines, which uses an alternation
of steps to get at a higher level.

3 loops and snowballs , not pipelines

The observation of the snowball effect, marked by sudden jumps
in number of added labels, leads to the idea that handwriting
recognition should not be a simple, one-directional pipeline, but
a loop. This loop has been described in Chapter 1 (see Figure 1.6
on page 10). By defining the handwriting recognition process
as a pipeline, the larger feedback loop is ignored, and it will be
harder to bootstrap new, challenging manuscripts with a new
script type or different vocabulary. This means that even though
Machine Learning and the representation of the word images
is very important, all elements, including the ground truth, are
important and should be considered in any system that uses
handwriting recognition techniques for retrieval or classification.

In this dissertation, we have studied the different aspects of the
handwriting recognition loop. We can consider the effect of
human feedback on these aspects. The first aspect we studied
is the algorithmic level in Machine Learning. Human feedback
here improves the algorithm, which can be applied on many
different problems. However, the improvement is usually tested
on specific use-cases or on standard academic datasets (e.g.,
the letters by President Washington or the MNIST handwritten
digit dataset). Furthermore, the results in Chapter 3 suggest
that an improvement to the overall system performance may be
achieved more efficiently by focussing on representation, rather
than learning the underlying process parameters. Currently, a
lot of studies are focussing on deep learning methods, that are
especially interesting because these methods train both classifiers
as well as representation. These methods will be discussed in
Section 4 below.

1 Also known as the man engine.
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The representation of the data is the second aspect that we stud-
ied where human feedback can be applied. Improvements in
this area are often tightly coupled to the dataset that they are
developed for. This frequently leads to the phenomenon of ‘One
PhD, One book’ where the efforts of, e.g., a graduate student
leads to accuracy improvements for only a single book or at best
a single collection. However, human effort on this aspect does
have a large impact on model performance, especially because
it is sensitive to the book or collection that it is applied to. We
believe there is still a need of handcrafted features: The two-step
process discussed in Chapter 4 allows changing the feature ex-
traction method to apply the best method for a collection or even
a class, in order to ‘harvest’ the most new labels. Transfer learn-
ing (Pan et al., 2010) is a very interesting technique that might
be very relevant for achieving high accuracy on new datasets,
however the datasets in Monk can be very different from one
another, in handwriting style as well as the material (such as the
paper, ink deposition method, etc.), and may warrant a different
representation method.

The third and final aspect of human feedback that we discussed is
that of providing labels. Labels are what drives the handwriting
recognition loop. Any effort to improve labels, improves the
knowledge of the system as a whole. The more knowledge is
embedded in a system, even more and better algorithms can be
applied. This means that different techniques, both at machine
learning as well as the representation level, should be used for
new collections than for collections that have many more labels,
classes and writing styles available. This knowledge is even more
tied to the collection than representation is, even though some
efforts have been made to use the knowledge of one collection
for bootstrapping another. The general principle, as well as any
techniques to apply these ideas, can be applied to any collection.

4 deep learning

The topic of Deep Learning, or techniques related to it, was
outside the initial scope of this dissertation. However, since a
couple of years Deep Learning has gathered much support in the
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community of AI and Machine Learning. Rightfully so, given
the breakthroughs and number of competitions that have been
won by Deep Learning methods. For example, in (Sanchez et al.,
2016) all the participants used a deep learning method in one
shape or form. The first major competition where Deep Learning
made a significant jump in performance was in the ImageNet
competition (Krizhevsky et al., 2012). Given the popularity of
Deep Learning, it is a subject that should be addressed in this
dissertation as well.

The core topic of this dissertation is the general feedback loop
in a search engine for handwritten document collections. In
Chapter 4 and this chapter, we have made the case for a method
that is relatively independent of the specific machine learning or
representation method. Deep learning seems like it would fit in
this framework, but it also seems that it is an opposing frame-
work: Deep Learning trains both classifier and representation
simultaneously.

There is much excitement surrounding deep learning since the
results and quality of the models are very impressive. However,
there are also reasons to be cautious. The downside is that you
need a large amount of labelled data. Furthermore, the fact
that you do not have to create a separate representation method
does not imply that there is no “manual labour” needed any
more. Designing the network architecture and tuning all the
hyperparameters is still largely done by hand and can be very
labour intensive. Also, training a character-based classifier is
susceptible to the same pitfalls as those mentioned in Chapter 4

(see for example Figure 4.6 on Page 67).

The increasing interest in Deep Learning models however seems
to underscore the conclusions from Chapters 2 and 3, that using
HMMs for handwriting recognition purposes is not straight-
forward and may have fundamental issues. Figure 5.2(a) shows
the relative interest in HMMs versus LSTMs on Google: Since
2016 the number of search queries for LSTMs has overtaken the
number of queries for HMMs. Both are methods for modelling
time series, where the main advantage of LSTMs is that they allow
for a longer history to be used in calculating the probability of the
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next observation. Furthermore, the Deep Learning community
is very effective in transferring new ideas in one field of study
to others. For example, the attention mechanism for LSTM
networks (Bahdanau et al., 2014; Doetsch et al., 2016) allows even
more precision in aligning the inputs to each part of the output
sequence, even though it is not necessarily developed for the
handwriting recognition community.

When there is enough training data to train a combined classi-
fier and representation method, the results tend to exceed the
more traditional methods where representation is hand-crafted
and classifiers such as SVMs or HMMs are used. However, the
feedback loop will be a lot slower: The large training set and
large number of model parameters make the training of an LSTM
or Convolutional Neural Network for example, computationally
expensive. The flexibility of creating separate representation
and classification methods is especially helpful to gain “phase
transitions” in the feedback loop.

Finally, the introspection methods described in Chapters 2 and 3

can, with some adjustments, also be applied to Deep Learning
methods. Opening black boxes of classifiers is gaining pop-
ularity, especially to build trust in the methods. The LIME
method (Ribeiro et al., 2016) aims to be a classifier-agnostic
method. There are a number of introspection methods for neural
networks as well (e.g., Olah et al., 2018; Barratt, 2017). It still
seems interesting to look at deep learning methods from a global
perspective, similar to the way we have looked at the HMMs.
This would help with a better understanding of strengths and
weaknesses of the backpropagation training method.

5 conclusion

The discussions in this chapter on the different aspects of hand-
writing recognition do not necessarily only apply to the hand-
writing recognition field; The conclusions can have implications
across disciplines and methods. A focus of this dissertation is
the inclusion of the labelling of images in the entire process, and
to consider this process to be a loop instead of a fixed pipeline.
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Labelled data is important—for both scientific research as well as
industry—because it drives the feedback loop and therefore al-
lows for improvements in both accuracy and the methods, either
machine learning or representation.

One thing that we have noticed while working on the Monk
system is that exploration is very useful. The Monk system uses
this idea to trigger phase transitions by switching ranking and
classification methods. This is especially useful when a certain
combination of these methods is no longer effective in getting
new labels from annotators. At the same time, we have seen that
the diversity in scientific research has declined: Deep Learning,
or neural networks in general, has been gaining popularity. A
quick study of abstracts and keywords of the 2018 edition of
the ICFHR conference shows that 55% of the papers mention
something related to deep learning or LSTM, up from 17% in
2014, see Figure 5.2(b). However, we believe that the field in
general benefits from exploration as well.

Exploration can take many forms. From the Monk system, we
have seen the idea of exploring different classification and rank-
ing methods and Chapter 4 shows that it is useful to separate
these two functions. Another parameter to explore is the repre-
sentation of the images. A deep learning method is usually not
ideal for these separate stages since the representation and classi-
fication method are usually deeply interconnected, and because
retraining takes a lot of time. However, the Monk system still
allows a user to select different methods to use in the sorting
of hit lists. Finally, inspiration can also be taken from biology.
While the idea of a neural network is biologically inspired, the
implementation is usually very engineering oriented.

An interesting biologically inspired approach can be found in
Hawkins and Blakeslee (2007); Hawkins et al. (2018). Hawkins
is working on a dual mission to both “reverse engineer” the
neocortex, as well as creating software based on the current level
of understanding of the neocortex. The approach is interesting
because it is an exploration of unsupervised learning of hierarchi-
cal representations and predictions. It would be very interesting
to see these theories applied to handwriting recognition, as a way
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(a) Google Trends data for HMMs and LSTMs

(b) Percentage of ICFHR abstracts on several topics

Figure 5.2: (a) Comparison of the number of searches on Google on “Hidden
Markov Model” versus “LSTM”. The y-axis represents the number
of searches relative to the highest number of searches in a given
month—in this case: November 2018 with the highest number of
searches for “LSTM”. Data by Google Trends. (b) Percentage of
abstracts and keywords in ICFHR articles that mention either a)
LSTM, CNN, Deep Learning or Neural Networks, b) HMMs, or c)
SVMs.
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of exploring a different direction from gradient descent-based
methods.

Besides a focus on methods and tools, there can be feedback
on other aspects of the writing as well. An interesting future
research area would be to focus on giving feedback on a sen-
tence, page or even book level. Feedback on these levels would
help with identifying relations between words and their position.
Feedback on semantics would help in understanding rather than
just classification.

The main ideas of this dissertation are a) that human feedback
can be injected in several aspects of the pipeline, b) that we
should consider handwriting recognition to be a loop instead of
a pipeline and finally, c) that by taking advantage of the loop, a
snowball effect can be achieved. Therefore, the advice is to invest
in a system of getting more and better labels in order to increase
the gain in the feedback loop, which has a positive effect on both
machine learning and (learned) representations as well.

While this dissertation focussed on techniques such as HMMs
and SVMs, using the described framework, it is possible to collect
enough labels to further study “label-hungry” methods such as
deep learning because this framework is method agnostic. We
even believe that this advice is not limited to the handwriting
recognition field. Having proper, labelled data is crucial to many
machine learning and pattern recognition applications across
many fields and industries.





A P P E N D I X

Implementing an HMM framework from scratch is not trivial.
The canonical paper by Rabiner (1989) contains all the theory
necessary, but it may require some extra considerations to make
implementation easier. We will give some of these considerations
here. The approach used for implementing jpHMM is taken in
part from A. Rahimi (2000)1.

Scaling forward and backward variables

The first issue to address is scaling the forward and backward
variables αt(j) and βt(j). The forward variable is the probability
of the partial observation sequence up to time t and being in state
Sj at time t, given the model λ: αt(j) = P(O1O2⋯Ot, qt = Sj∣λ).
The backward variable is the probability of the partial observation
sequence from time t + 1 to time T, given state Sj at time t and
the model λ: βt(j) = P(Ot+1Ot+2⋯OT∣qt = Sj, λ).

These variables need to be scaled to avoid problems with floating
point representations in code. Since the forward variable αt(j)
usually consists of many products of transition and observation
probabilities, they tend to approach 0 quickly. On a computer,
these variables are bound by a finite precision floating point
representation.

A scaling can be applied to both αt(j) and βt(j), to keep the
calculations in range of a floating point representation. Rabiner
proposes to use the scaling factor ct =

1
∑N

i=1 αt(i)
, which is indepen-

dent of state. This means that ∑N
i=1 α̂t(i) = 1. Both αt(j) and βt(j)

are scaled with the same factor, ct.

1 Please find Rahimi’s solution at http://alumni.media.mit.edu/∼rahimi/

rabiner/rabiner-errata/rabiner-errata.html, accessed January 23, 2014.
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The recursion formulae defined by Rabiner are theoretically cor-
rect, but hard to use for implementation because it is unclear
that one needs to use the scaled α̂t(i) in the computation for ct+1.
Rahimi therefore proposes the following computation steps:

α1(i) = α1(i)

αt+1(j) =
N

∑
i=1

α̂t(i)aijbj(Ot+1)

ct+1 =
1

∑N
i=1 αt+1(i)

α̂t+1(i) = ct+1αt+1(i)

Rabiner leaves out the full steps to compute β̂t(i). We can use
the following (also from Rahimi):

βT(i) = βT(i)

βt(j) =
N

∑
i=1

aijbj(Ot+1)β̂t+1(i)

β̂t(i) = ctβt(i)

We can express the probability of a sequence given a model
using P(O∣λ) =

1
∏T

t=1 ct
, but since this is also a product of prob-

abilities, we are better off using the sum of log probabilities:
log[P(O∣λ)] = −∑T

t=1 log ct.

Multiple observation sequences of variable duration

While implementing the reestimation formulae for multiple ob-
servation sequences of variable duration, we ran into the prob-
lem of requiring P(O(k)∣λ), where O(k) is the kth observation
sequence. We can no longer compute this, because we now use
log-probabilities. However, we can rewrite these formula to no
longer use P(O(k)∣λ). The full derivations are left out, but are
essentially the same as those by Rahimi. We will also show the
reestimation formula for π, because both Rabiner and Rahimi
do not mention it. They assume a strict left-right model, such as
Bakis, where π1 = 1 and πi = 0 for i ≠ 1.
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We will use the following equalities:
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t (j)
. Because we now have

a new way of representing P(O(k)∣λ) as 1
Ck

Tk

, we can substitute

that into the reestimation equations, leading to the following
equations after some rewriting:
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For the full details and derivations of the reestimation equations,
please see the explication by Rahimi or contact the authors of
this study. The documented code for jpHMM will be published
on-line soon.





S U M M A RY

Handwriting recognition is an active field of research, even
though today our writing is mostly done digitally. There is
a large number of archives that contain vast collections of hand-
written documents, often in script styles that are hard to read for
most people. Searching, and finding relevant pages, is a manual
and tedious process.

In the field of handwriting recognition, many researchers use
standardized benchmarking data sets to develop the machine
learning and pattern recognition techniques and to compare their
results to others. However, these datasets are usually very clean
and are not comparable to the noisy quality of the historical
handwritten document collections in archives and national li-
braries. When applying the techniques from research to such
problematic collections, a number of hidden assumptions that are
usually entertained by researchers in Machine Learning become
apparent. Such assumptions are discussed in this thesis, along
with a number of issues that were encountered in the application
of machine learning techniques within a large-scale search engine
for historical documents: Monk.

One of the assumptions is that the handwriting recognition pro-
cess is usually considered a linear pipeline consisting of feature
extraction and machine learning1. A ground truth for the data
is generally presumed by researchers, and therefore not part of
these pipelines. When designing a search engine, the challenging
part was integrating the labelling into the process. Line-by-line
editors of annotations are not ideal: A text line is not a natural
object for search and starting from the first page moving down
line by line does not use the full potential an integrated model
has to offer. Therefore, we propose a more data-mining oriented

1 Segmentation and other pre-processing steps are outside the scope of this thesis
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approach that uses a hit-list interface to gather labels per word
image.

A data-mining approach to labelling images allows a human
user to have a direct impact on the performance of the entire
handwriting recognition process (as depicted in Figure 1.6, on
page 10). There are several aspects where humans have an
impact on the process: (a) On the machine learning methods,
(b) on the feature engineering and (c) on the labelling. These
aspects were studied in more depth in each of the chapters of
this thesis. For each aspect, we looked at the issues that come
up during the design of a search engine in order to answer the
main question: Where can one have the most impact on the
quality of the results of a search engine for historical handwritten
documents: By improving the machine learning methods, the
feature engineering methods or the labelling methods?

Chapter 2

Chapter based on
van Oosten, J.-P. and Schomaker, L. (Submitted). Examining
common assumptions about the convergence of the
Baum-Welch training algorithm for hidden Markov models.
Journal of Machine Learning Research

In Chapter 2, we examined a number of assumptions related
to the machine learning aspect of the handwriting recognition
process. We were especially interested in assumptions about
convergence in the training algorithm for Hidden Markov Mod-
els (HMMs), since HMMs have played such an important role
in handwriting recognition. The main assumptions that were
studied in this thesis are related to the fact that the Baum-Welch
training method converges to a local optimum.

The first assumption is that the closer a model is to the global
optimum, the better the method will perform. This was studied
by generating data with a known global optimum, and training
many models on this generated data. We could then measure
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the distance between the models and the global optimum and
measure the performance in terms of log-likelihood. Surprisingly,
this experiment showed us that the (χ2) distance to the global
optimum is not a good predictor of likelihood of a trained model.
One would expect that models closer to the global optimum
would also have a better performance.

The other main assumption that we tested in Chapter 2, is that
models that are already close to the global optimum (Baum-Welch
starts by picking a random starting point and trains from there)
will most likely end up close to the global optimum. However,
we found that it is hard for models to converge to a point close
to the global optimum without guidance.

Chapter 3

Chapter based on
van Oosten, J.-P. and Schomaker, L. (2014a). A reevaluation and
benchmark of hidden Markov models. In Frontiers in
Handwriting Recognition (ICFHR), 2014 14th International
Conference on, pages 531–536. IEEE

In Chapter 3, we continued studying HMMs, but zoomed in on
the essential elements of the models. We were mostly interested
in the relation between the state-transition probabilities, that
model the temporal structure of the data, and the observation
probabilities, that model the feature representation of the data
per state. The main assumption that is tested in this chapter
is that the temporal structure is as important as the feature
representation.

We studied the relation between the two parts by generating
data with a particular temporal structure and trained a model on
this data. This structure should be present in the state-transition
probabilities in a trained model. However, the experiments in
Chapter 3 showed that there is no clear indication that the origi-
nal structure could be found. Another experiment that was per-
formed in Chapter 3 is removing the temporal relation between
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states and observe whether or not classification performance
dropped in these models. Surprisingly, the performance did not
drop as drastically as expected.

The main conclusion that we can draw from these experiments is
that the observation probabilities seem to have a larger impact
on the model performance than the transition probabilities. This
means, related to the general research question, that special
attention should be given to the feature representation.

Chapter 4

Chapter based on
van Oosten, J.-P. and Schomaker, L. (2014b). Separability versus
prototypicality in handwritten word-image retrieval. Pattern
Recognition, 47(3):1031–1038

Finally, in Chapter 4 we turned our attention to the labelling
part of the handwriting recognition process. We consider it
an essential part of the process and explicitly integrate it into
a continuous loop. The hit-list interface is introduced in this
chapter and it helps gather a large amount of training data by
achieving a snow-ball effect (i.e., an initially small number of
labels can accumulate more and more labels over time). A hit-list
is constructed by classifying words into the different lists and
then ranking each list. We found that one cannot assume that a
good recognizer will also be good at ranking.

Related to labelling, we found that it is important to consider the
construction of your dataset as part of the process and integrate
human annotators in a continuous learning cycle. An implication
from Chapter 4 is that one should alternate between classification
and ranking and use different methods that are optimized for
each subtask. Also, the specific classification and ranking meth-
ods should not be considered as fixed. It is necessary to alternate
between these, e.g., if the current method does not yield enough
new labels anymore to keep the momentum going. The final
conclusion from this is that the handwriting recognition process
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is not a static process, a single training event, but needs constant
maintenance.

Discussion

To conclude, this thesis discusses human involvement in the
handwriting process from three different angles: In the design of
machine learning methods, design of feature extraction methods
and representations, and labelling. Chapters 2 and 3 mainly
deal with assumptions around the machine learning and feature
extraction methods, while the main concern in Chapter 4 is about
how to deal with a changing dataset, especially with continuous
additions of labels.

The main method of examining the assumptions in the use of
HMMs is the generation of data from known models, and to
study what happens in the models during training. Taking
a global perspective to study what happens in local (gradient
descent) processes is a method that can be used to study other
machine learning methods as well, such as neural networks. If the
models themselves can be used to generate data, it is relatively
easy to compare the trained model versus the global optimum.

The bigger theme in the thesis is about the idea that we need to
regard the handwriting recognition process as a dynamic process.
In the Monk system, this is expressed in a flexible hit list interface.
While the hit list method is only applied to handwritten words
in this thesis, we believe that this form of active learning is
relevant for machine learning in general. Ideally, the beneficial
effect of a labelling action is experienced as soon as possible by
the user. This creates a snow-ball effect in the feedback loop
and leads to broadly labelled datasets. Another benefit of the
hit list interface is that it allows exploration. Using different
classification and ranking methods is useful when the addition
of labels is stagnating.

It is crucial for all machine learning methods to have proper,
labelled data. Therefore, the framework described in this thesis
is relevant for all applications of machine learning across fields
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and industries. The advice in this thesis is therefore to invest in a
system of getting more and better labels and to incorporate this
framework into any application of machine learning.



S A M E N VAT T I N G

Handschriftherkenning is een actief onderzoeksgebied, ondanks
het feit dat tegenwoordig de meeste tekst digitaal geproduceerd
wordt. Grote hoeveelheden handgeschreven teksten zijn opgesla-
gen in archieven zoals het Kabinet van de Koning in het Nationaal
Archief. Vaak zijn dit manuscripten die in ouderwetse, lastig te
lezen, handschriften zijn geschreven. Het zoeken naar, en vinden
van, relevante pagina’s is een handmatig en tijdrovend proces.

In het vakgebied van handschriftherkenning gebruiken veel on-
derzoekers standaard datasets voor het ontwikkelen en ver-
gelijken van hun patroonherkennings- en machine learning-
technieken. Deze datasets zijn echter doorgaans voorbewerkt,
en niet te vergelijken met de kwaliteit van de historische, hand-
geschreven collecties in de archieven en nationaal bibliotheken.
Wanneer de technieken uit het vakgebied worden toegepast op
dit soort moeilijk materiaal, komen een aantal verborgen aanna-
mes naar voren die vaak door de onderzoekers gedaan zijn. Deze
aannames worden onderzocht in dit proefschrift, samen met een
aantal uitdagingen die naar voren kwamen bij het toepassen van
machine learning-technieken in een grootschalige zoekmachine
voor historische documenten: Monk.

Een van de aannames is dat het proces van handschriftherken-
ning vaak als lineair wordt beschouwd, bestaande uit het extrahe-
ren van kenmerken en machine learning1. Onderzoekers gaan er
over het algemeen van uit dat er al een “grondwaarheid” (Ground
Truth) beschikbaar is. Het maken en beheren van zo’n dataset
maakt daarom vaak geen deel uit van het proces. Een onderdeel
van dat maken van een dataset is het labelen (plaatjes voorzien
van labels die aangeven welk woord er geschreven staat). Het

1 Segmentatie en andere voorbewerkingsstappen worden in dit proefschrift niet
expliciet behandeld
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was een uitdaging om het labelingsproces te integreren in de
bouw van een zoekmachine. Het regel voor regel annoteren is
niet ideaal: men zoekt doorgaans niet op een volledige tekstregel.
Bovendien wordt het volledige potentieel van een geı̈ntegreerd
model niet benut als er pagina voor pagina, regel voor regel
geannoteerd wordt. Daarom stellen we een aanpak voor die
op datamining is gebaseerd en gebruik maakt van een “hit list”
interface om labels per woordbeeld te verzamelen.

Een datamining-benadering voor het labelen van afbeeldingen
maakt het voor mensen mogelijk om direct impact te hebben
op de prestaties van het volledige handschriftherkenningsproces
(zoals afgebeeld in Figuur 1.6 op pagina 10). er zijn verschillende
aspecten waar mensen een impact kunnen hebben op het proces:
(a) Op de machine learning-methoden, (b) op de feature enginee-
ring en (c) op het verzamelen van labels. Deze aspecten worden
in elk van de hoofdstukken van dit proefschrift onderzocht. Voor
elk aspect hebben we gekeken naar de problemen die naar voren
kwamen bij het bouwen van een zoekmachine. Het doel was
om de hoofdvraag te beantwoorden: Waar kan men de meeste
impact hebben op de kwaliteit van de resultaten van een zoek-
machine voor historische handgeschreven documenten: Door
het verbeteren van de machine learning-methoden, de feature
engineering-methoden of de label collectie-methoden?

Hoofdstuk 2

Dit hoofdstuk is gebaseerd op
van Oosten, J.-P. and Schomaker, L. (Submitted). Examining
common assumptions about the convergence of the
Baum-Welch training algorithm for hidden Markov models.
Journal of Machine Learning Research

In Hoofdstuk 2 hebben we een aantal aannames bestudeerd
die betrekking hebben op het Machine Learning-aspect van
het handschriftherkenningsproces. We waren in het bijzonder
geı̈nteresseerd in de aannames over convergentie in de trai-
ningsalgoritmen voor Hidden Markov Models (HMMs), aan-
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gezien HMMs zo’n belangrijke rol hebben gespeeld in hand-
schriftherkenning. De belangrijkste aannames die onderzocht
zijn in dit proefschrift hebben betrekking op het feit dat de Baum-
Welch-trainingsmethode naar een lokaal optimum convergeert.

De eerste onderzochte aanname is dat hoe dichter het model
bij een globaal optimum ligt, hoe beter het zal presteren. Dit
was bestudeerd door data te genereren met een bekend globaal
optimum, en veel verschillende modellen te laten trainen op
deze gegenereerde data. Zo konden we de afstand tussen de
getrainde modellen en het globale optimum meten, evenals de
prestatie in termen van log-likelihood. Verrassend genoeg heeft
dit experiment ons laten zien dat de (χ2) afstand tot het globale
optimum geen goede voorspeller is van de likelihood van een
getraind model. Men zou verwachten dat modellen die dichterbij
het globale optimum komen ook een betere prestatie zouden
hebben.

De andere aanname die in Hoofdstuk 2 is getoetst, is dat model-
len die al dicht bij het globale optimum liggen (Baum-Welch start
met een willekeurig gekozen startpunt en optimaliseert vanaf
daar), ook dicht bij het globale optimum zullen komen te liggen.
We vonden echter dat het moeilijk is voor modellen om zonder
hulp te convergeren naar een punt dichtbij het globale optimum.

Hoofdstuk 3

Dit hoofdstuk is gebaseerd op
van Oosten, J.-P. and Schomaker, L. (2014a). A reevaluation and
benchmark of hidden Markov models. In Frontiers in
Handwriting Recognition (ICFHR), 2014 14th International
Conference on, pages 531–536. IEEE

Hoofdstuk 3 gaat verder met onderzoek naar HMMs, maar met
een focus op de essentiële elementen van de modellen. We waren
vooral geı̈nteresseerd in de relatie tussen de state transition-kansen
die de temporale aspecten modelleren, en de observation-kansen
die de vormkenmerken per state modelleren. De belangrijkste
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aanname die in dit hoofdstuk aan bod komt is dat de temporale
structuur ongeveer even belangrijk is als de feature-representatie.

We hebben de relatie tussen de twee delen van de modellen
bestudeerd door wederom data te genereren, dit keer met een
bepaalde temporele structuur, en modellen te trainen op deze
data. Deze structuur zou in de state transition-kansen van het
getrainde model aanwezig moeten zijn. Echter, de experimenten
in Hoofdstuk 3 laten zien dat de structuur niet overduidelijk te-
ruggevonden kan worden. Een ander experiment in Hoofdstuk 3

verwijdert de temporele relatie tussen states om te kijken of de
prestaties voor een classificate-taak achteruit gingen. Opmer-
kelijk genoeg gingen de prestaties niet zo drastisch omlaag als
verwacht.

De belangrijkste conclusie die we uit deze experimenten kun-
nen trekken is dat de observatie-kansen een grotere impact op
de modelprestaties hebben dan de transitie-kansen. Dit bete-
kent, in relatie tot onze globale onderzoeksvraag, dat feature
representatie in het bijzonder aandacht verdient.

Hoofdstuk 4

Dit hoofdstuk is gebaseerd op
van Oosten, J.-P. and Schomaker, L. (2014b). Separability versus
prototypicality in handwritten word-image retrieval. Pattern
Recognition, 47(3):1031–1038

In Hoofdstuk 4 tenslotte richten we onze aandacht op het labe-
lingsaspect van het handschriftherkenningsproces. We beschou-
wen het als een essentieel onderdeel van het proces en integreren
het expliciet in een iteratief proces. De hitlist-interface wordt in
dit hoofdstuk geı̈ntroduceerd. Deze helpt door een sneeuwbalef-
fect bij het verzamelen van een grote hoeveelheid trainingsdata
(dat wil zeggen, een aanvankelijk klein aantal labels kan op den
duur steeds meer labels verzamelen). Een hitlijst wordt samen-
gesteld door woorden in verschillende lijsten te classificeren en
vervolgens elke lijst te rangschikken (ranking). We kwamen er-
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achter dat je niet kunt aannemen dat een goede classifier ook een
goede rangschikking kan maken.

Met betrekking tot labeling ontdekten we dat het belangrijk is
om de constructie van een dataset als onderdeel van het proces te
beschouwen en menselijke annotatoren te integreren in een conti-
nue leercyclus. Een implicatie van Hoofdstuk 4 is dat men moet
afwisselen tussen classificatie en rangschikking, en verschillende
methoden moet gebruiken die zijn geoptimaliseerd voor elke
subtaak. Beschouw bovendien de specifieke classificatie- en rang-
schikkingsmethoden niet als vaststaand. Het is nodig om deze
af te wisselen, bijvoorbeeld als de huidige methode niet genoeg
nieuwe labels oplevert om het momentum vast te houden. De
uiteindelijke conclusie hieruit is dat het handschriftherkennings-
proces geen statisch proces is, of een enkel trainingsmoment,
maar constant onderhoud nodig heeft.

Discussie

Tot slot bespreekt dit proefschrift de menselijke betrokkenheid
bij het handschriftherkenningsproces vanuit drie verschillende
invalshoeken: In het ontwerp van de machine learning-methoden,
het ontwerp van feature extraction-methoden en representaties,
en het labelen. De Hoofdstukken 2 en 3 gaan voornamelijk
over aannames rond machine learning- en feature extraction-
methoden, terwijl het belangrijkste onderwerp in Hoofdstuk 4

het omgaan met een veranderende dataset is, vooral als er continu
labels worden toegevoegd.

De belangrijkste methode om de aannames bij het gebruik van
HMMs te onderzoeken is het genereren van data uit bekende
modellen, en om te bestuderen wat er tijdens de training in de
modellen gebeurt. Vanuit een globaal perspectief kijken wat er
gebeurt in lokale (gradient descent) processen is een methode die
kan worden gebruikt om ook andere machine learning-methoden
te bestuderen, zoals neurale netwerken. Als de modellen zelf
kunnen worden gebruikt om data te genereren, is het relatief
eenvoudig om het getrainde model te vergelijken met het globale
optimum.
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Het grotere thema in dit proefschrift gaat over het idee dat we het
handschriftherkenningsproces als een dynamisch proces moeten
beschouwen. In het Monk-systeem komt dit tot uiting in een
flexibele hitlijst-interface. Hoewel de hitlijstmethode in dit proef-
schrift alleen wordt toegepast op handgeschreven woorden, zijn
we van mening dat deze vorm van actief leren relevant is voor
machine learning in het algemeen. Idealiter wordt het gunstige
effect van een labelingshandeling zo snel mogelijk door de gebrui-
ker ervaren. Dit creëert een sneeuwbaleffect in de feedbackloop
en leidt tot een breed gelabelde dataset. Een ander voordeel van
de hitlijst-interface is dat het exploratie mogelijk maakt. Het ge-
bruik van verschillende classificatie- en rangschikkingsmethoden
is nuttig wanneer het toevoegen van labels stagneert.

Het is van cruciaal belang voor alle machine learning-methoden
om over de juiste gelabelde data te beschikken. Daarom is het
framework dat beschreven is in dit proefschrift relevant voor alle
toepassingen van machine learning, zowel in de academische
wereld als ook in de industrie. Het advies van dit proefschrift is
daarom om te investeren in een systeem om meer en betere labels
te krijgen en om dit framework op te nemen in elke toepassing
van machine learning.
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